進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908201911513000
論文名稱(中文) 探討在腕隧道施加外部下壓力對於屈指肌腱之拉弓效應的影響
論文名稱(英文) Effects of External Compressive Force at the Carpal Tunnel on the Bowstringing Effect of the Flexor Tendon
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳怡靜
研究生(英文) Yi-Ching Chen
學號 P86064043
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-蘇芳慶
口試委員-周一鳴
口試委員-郭立杰
口試委員-楊岱樺
口試委員-吳柏廷
中文關鍵字 腕隧道症候群  板機指  拉弓效應  外部下壓力 
英文關鍵字 carpal tunnel syndrome  trigger finger  bowstringing effect  external compressive force 
學科別分類
中文摘要 患有腕隧道症候群之病人會施行腕隧道解離手術將橫腕韌帶切開,以此降低正中神經在腕隧道內所受到的壓迫。然而先前有研究指出橫腕韌帶的解離會使得屈指肌腱產生拉弓(bowstringing)現象,並會導致板機指症狀的發生率增加。為了降低這個現象的發生,本研究希望能藉由在腕隧道上施加外部壓力來抑制屈指肌腱的拉弓效應,並探討不同的外部下壓力對於屈指肌腱的影響。另外,本研究也希望能夠找出能夠有效消除肌腱在解離手術後產生的拉弓效應的外部下壓力,並且此外部下壓力不會對腕隧道內的結構造成二次傷害。
本研究以十五位健康成人以及十三位進行腕隧道解離手術之腕隧道症候群患者為研究對象。健康成人以慣用手之中指作為施測手指,患者則以患側手之中指來進行施測。在施測過程中會在受試者的腕隧道上施加不同的外部下壓力,健康成人分別施加輕觸力(just contact force)、2牛頓、4牛頓、6牛頓和8牛頓力,腕隧道症候群患者的外部下壓力則為輕觸力、4牛頓及8牛頓力。施加外部下壓力的同時也記錄在腕隧道以及掌指關節處屈指肌腱的超音波影像,並利用荷重元調整腕隧道上的外部下壓力及紀錄施測過程中的力值變化。
研究結果顯示屈指肌腱在腕隧道內的位置以及在掌指關節處的進入角度會隨著外部下壓力的增加而減小。這個結果可能代表外部下壓力能夠有效抑制致屈指肌腱在橫腕韌帶解離後的過度位移。比較腕隧道症候群患者在解離手術前及手術後的結果,可以推測出4牛頓和8牛頓的外部下壓力雖然可以有效抑制肌腱的位移,但是可能會導致屈指肌腱和橫腕韌帶之間過多的摩擦力以及腕隧道內壓力的提高,可能會造成二次腕隧道症候群。
英文摘要 Patients with carpal tunnel syndrome (CTS) undergo carpal tunnel release (CTR) surgery to decompress the carpal tunnel pressure in the carpal tunnel by transecting the transverse carpal ligament (TCL). However, previous studies reported that the lack of the TCL causes the bowstringing phenomenon of the flexor tendon and increases the incidence of trigger finger. In the current study, it is considered that applying external compressive force on the carpal tunnel may be able to restrict the bowstringing phenomenon. The purpose of the study is to investigate the effect of different compressive force on the flexor tendon and find out the effective and appropriate force for eliminating the bowstringing effect after CTR surgery.
There were fifteen healthy subjects and ten CTS subjects who underwent ultrasonographically guided percutaneous CTR surgery in the study. Subjects were asked to flex the middle finger while applying different external compressive force on the top of the carpal tunnel. Compressive forces in healthy subjects were just contact, 2N, 4N, 6N, 8N force. CTS subjects were compressed just contact, 4N, and 8N force on the carpal tunnel. Images of the flexor tendon within the carpal tunnel and at the MCP joint were recorded by the ultrasound. Compressive force on the carpal tunnel was detected by the loadcell.
The flexor tendon positions and angles between the flexor tendon and metacarpal bone decrease as external compressive force increases. It may suggest that applying compressive force on the carpal tunnel can restrict excessive movement of the flexor tendon resulting from CTS patients cutting the TCL. Compressing just contact force on healthy and CTS subjects in the pre-surgery has significant differences compared with 4N and 8N in the post-surgery. It may represent that 4N and 8N force results in more normal force on the surface between the flexor tendon and the TCL and will cause greater frictional force and carpal tunnel pressure, which may result in the recurrence of CTS.
論文目次 中文摘要 I
Abstract II
致謝 IV
Contents V
List of Figure VIII
Chapter 1 Introduction 1
1.1. Background 1
1.1.1. Anatomy of carpal tunnel 1
1.1.2. Anatomy of hand digit 2
1.1.3. Carpal tunnel syndrome 4
1.1.4. Trigger finger 4
1.1.5. Carpal tunnel release 5
1.1.6. Relation of trigger finger and carpal tunnel release 7
1.1.7. Effect of external force on the carpal tunnel 8
1.2. Motivation 8
1.3. Hypotheses and purposes 9
Chapter 2 Materials and Methods 10
2.1. Subjects 10
2.2. Experimental apparatuses 11
2.2.1. Ultrasound 11
2.2.2. Loadcell 11
2.2.3. Custom-designed dynamometer 12
2.3. Experimental procedure 13
2.4. Parameters 17
2.4.1. Part one: The effect on the flexor tendon migration 17
2.4.1.1. Tendon position 17
2.4.1.2. The height of the carpal tunnel 18
2.4.1.3. The normalized tendon position 18
2.4.1.4. Volar-dorsal migration 19
2.4.1.5. The normalized volar-dorsal migration 19
2.4.2. Part two: The effect on the entrance angle of the flexor tendon 19
2.4.2.1. Angle between the flexor tendon and metacarpal bone 19
2.4.2.2. Change in the entrance angle 21
2.4.3. Loadcell force on the carpal tunnel 21
2.5. Statistical analysis 22
Chapter 3 Results 23
3.1. Healthy subjects with different compressive force on the carpal tunnel 23
3.1.1. Tendon position 23
3.1.2. Angle between the FDS tendon and metacarpal bone 24
3.1.3. Angle between the FDP tendon and metacarpal bone 26
3.2. CTS subjects in the pre- and post-surgery with different compressive force on the carpal tunnel 28
3.2.1. Tendon position and volar-dorsal migration 28
3.2.2. The height of the carpal tunnel 30
3.2.3. The normalized tendon position and volar-dorsal migration 30
3.2.4. Angle between the FDS tendon and metacarpal bone and change in the entrance angle of FDS tendon 32
3.2.5. Angle between the FDP tendon and metacarpal bone and hange in the entrance angle of FDP tendon 34
3.2.6. Force measured on the carpal tunnel 36
3.3. Healthy subjects and CTS subjects in the post-surgery with different compressive force on the carpal tunnel 38
3.3.1. Tendon position and volar-dorsal migration 38
3.3.2. The height of the carpal tunnel 40
3.3.3. The normalized tendon position and volar-dorsal migration 40
3.3.4. Angle between the FDS tendon and metacarpal bone and change in the entrance angle of FDS tendon 42
3.3.5. Angle between the FDP tendon and metacarpal bone and change in the entrance angle of FDP tendon 44
3.3.6. Force measured on the carpal tunnel 46
Chapter 4 Discussions 48
4.1. Healthy subjects with different compressive force 48
4.1.1. The effect within the carpal tunnel 48
4.1.2. The effect at MCP joint 49
4.1.3. The force on the carpal tunnel 49
4.2. Comparison of the effect of different compressive force 50
4.2.1. Tendon position 51
4.2.2. Volar-dorsal migration 52
4.2.3. The height of the carpal tunnel 53
4.2.4. The normalized tendon position 53
4.2.5. The normalized volar-dorsal migration 54
4.2.6. Angle between the flexor tendon and metacarpal bone 55
4.2.7. Change in the entrance angle of the flexor tendon 56
4.2.8. The force on the carpal tunnel 57
4.3. Limitations 59
Chapter 5 Conclusion 60
References 61
Appendix I 64
6.1. CTS subjects in the pre-surgery with different compressive force on the carpal tunnel 64
6.1.1. Tendon position and volar-dorsal migration 64
6.1.2. The height of the carpal tunnel 65
6.1.3. The normalized tendon position and volar-dorsal migration 66
6.1.4. Angle between the FDS tendon and metacarpal bone and change in the entrance angle of FDS tendon 67
6.1.5. Angle between the FDP tendon and metacarpal bone and change in the entrance angle of FDP tendon 68
6.1.6. Force measured on the carpal tunnel 69
參考文獻 1. Kim, D.H., et al., Pressure-morphology relationship of a released carpal tunnel. J Orthop Res, 2013. 31(4): p. 616-20.
2. Li, Z.M., et al., Biomechanical role of the transverse carpal ligament in carpal tunnel compliance. J Wrist Surg, 2014. 3(4): p. 227-32.
3. Zhao, C., et al., Gliding resistance of flexor tendon associated with carpal tunnel pressure: a biomechanical cadaver study. J Orthop Res, 2011. 29(1): p. 58-61.
4. Seiler, J.G., 3rd, et al., Normal Palmar Anatomy and Variations That Impact Median Nerve Decompression. J Am Acad Orthop Surg, 2017. 25(9): p. e194-e203.
5. Marquardt, T.L., J.N. Gabra, and Z.M. Li, Morphological and positional changes of the carpal arch and median nerve during wrist compression. Clin Biomech (Bristol, Avon), 2015. 30(3): p. 248-53.
6. Klifto, C.S., et al., Flexor Tendon Injuries. J Am Acad Orthop Surg, 2018. 26(2): p. e26-e35.
7. Kociolek, A.M., J. Tat, and P.J. Keir, Biomechanical risk factors and flexor tendon frictional work in the cadaveric carpal tunnel. J Biomech, 2015. 48(3): p. 449-55.
8. Hayashi, M., et al., Carpal tunnel syndrome and development of trigger digit. J Clin Neurosci, 2005. 12(1): p. 39-41.
9. Ibrahim, I., et al., Carpal Tunnel Syndrome: A Review of the Recent Literature. The Open Orthopaedics Journal, 2012. 6: p. 69-76.
10. Agee, J.M., T.R. Maher, and M.S. Thompson, Moment arms of the digital flexor tendons at the wrist: Role of differential loading in stability of carpal tunnel tendons. The Journal of Hand Surgery, 1998. 23(6): p. 998-1003.
11. Gabra, J.N., et al., In vivo tissue interaction between the transverse carpal ligament and finger flexor tendons. Med Eng Phys, 2016. 38(10): p. 1055-62.
12. An, K.N., et al., Tendon excursion and moment arm of index finger muscles. Journal of Biomechanics, 1983. 16(6): p. 419-425.
13. Szabo, R.M. and L.K. Chidgey, Stress carpal tunnel pressures in patients with carpal tunnel syndrome and normal patients. Journal of Hand Surgery. 14(4): p. 624-627.
14. Bueno-Gracia, E., et al., Reliability of measurement of the carpal tunnel and median nerve in asymptomatic subjects with ultrasound. Musculoskelet Sci Pract, 2017. 32: p. 17-22.
15. Skie, M., et al., Carpal tunnel changes and median nerve compression during wrist flexion and extension seen by magnetic resonance imaging. The Journal of Hand Surgery, 1990. 15(6): p. 934-939.
16. Bower, J.A., G.J. Stanisz, and P.J. Keir, An MRI evaluation of carpal tunnel dimensions in healthy wrists: Implications for carpal tunnel syndrome. Clin Biomech (Bristol, Avon), 2006. 21(8): p. 816-25.
17. Ryzewicz, M. and J.M. Wolf, Trigger digits: principles, management, and complications. J Hand Surg Am, 2006. 31(1): p. 135-46.
18. Tarbhai, K., S. Hannah, and H.P. von Schroeder, Trigger finger treatment: a comparison of 2 splint designs. J Hand Surg Am, 2012. 37(2): p. 243-9, 249 e1.
19. Goshtasby, P.H., D.R. Wheeler, and O.J. Moy, Risk factors for trigger finger occurrence after carpal tunnel release. Hand Surg, 2010. 15(2): p. 81-7.
20. Sato, J., Y. Ishii, and H. Noguchi, Comparison of the Thickness of Pulley and Flexor Tendon Between in Neutral and in Flexed Positions of Trigger Finger. Open Orthop J, 2016. 10: p. 36-40.
21. Okutsu, I., et al., Endoscopic management of carpal tunnel syndrome. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1989. 5(1): p. 11-18.
22. Miyamoto, H., et al., Stiffness of the first annular pulley in normal and trigger fingers. J Hand Surg Am, 2011. 36(9): p. 1486-91.
23. Akhtar, S., et al., Management and referral for trigger finger/thumb. BMJ, 2005. 331(7507): p. 30-3.
24. Harada, K., et al., TRIGGER DIGITS-ASSOCIATED CARPAL TUNNEL SYNDROME:: RELATIONSHIP BETWEEN CARPAL TUNNEL RELEASE AND TRIGGER DIGITS. Hand Surgery, 2005. 10(2/3): p. 205-208.
25. Hombal, J.W.R. and R. Owen, Carpal tunnel decompression and trigger digits. The Hand, 1970. 2(2): p. 192-196.
26. King, B.A., P.J. Stern, and T.R. Kiefhaber, The incidence of trigger finger or de Quervain’s tendinitis after carpal tunnel release. Journal of Hand Surgery (European Volume), 2013. 38(1): p. 82-83.
27. Lee, S.K., K.W. Bae, and W.S. Choy, The relationship of trigger finger and flexor tendon volar migration after carpal tunnel release. J Hand Surg Eur Vol, 2014. 39(7): p. 694-8.
28. Seradge, H., Y.-C. Jia, and W. Owens, In vivo measurement of carpal tunnel pressure in the functioning hand. The Journal of Hand Surgery, 1995. 20(5): p. 855-859.
29. Lundborg, G., et al., Median nerve compression in the carpal tunnel—Functional response to experimentally induced controlled pressure. The Journal of Hand Surgery, 1982. 7(3): p. 252-259.
30. Kubo, K., et al., The quantitative evaluation of the relationship between the forces applied to the palm and carpal tunnel pressure. Journal of Biomechanics, 2018. 66: p. 170-174.
31. Xiu, K.H., J.H. Kim, and Z.M. Li, Biomechanics of the transverse carpal arch under carpal bone loading. Clin Biomech (Bristol, Avon), 2010. 25(8): p. 776-80.
32. Momose, T., et al., Structural changes of the carpal tunnel, median nerve and flexor tendons in MRI before and after endoscopic carpal tunnel release. Hand Surg, 2014. 19(2): p. 193-8.
33. van Doesburg, M.H., et al., Transverse plane tendon and median nerve motion in the carpal tunnel: ultrasound comparison of carpal tunnel syndrome patients and healthy volunteers. PLoS One, 2012. 7(5): p. e37081.
34. Chen, H.-Y., Effects of Carpal Tunnel Release on Biomechanical Behavior of Flexor Tendons - A Clinical Study, in Department of biomedical engineering. 2017, National Cheng Kung university: Tainan. p. 65.
35. Schrier, V., et al., Reliability of ultrasound speckle tracking with singular value decomposition for quantifying displacement in the carpal tunnel. J Biomech, 2019. 85: p. 141-147.
36. Li, Z.M., et al., Carpal tunnel expansion by palmarly directed forces to the transverse carpal ligament. J Biomech Eng, 2009. 131(8): p. 081011.
37. Li, Z.M., T.L. Masters, and T.A. Mondello, Area and shape changes of the carpal tunnel in response to tunnel pressure. J Orthop Res, 2011. 29(12): p. 1951-6.
38. Karalezli, N., et al., Transverse carpal ligament and forearm fascia release for the treatment of carpal tunnel syndrome change the entrance angle of flexor tendons to the A1 pulley: the relationship between carpal tunnel surgery and trigger finger occurrence. ScientificWorldJournal, 2013. 2013: p. 630617.
39. Acar, M.A., et al., Triggering of the Digits After Carpal Tunnel Surgery. Ann Plast Surg, 2015. 75(4): p. 393-7.
40. Gancarczyk, S.M. and R.J. Strauch, Carpal tunnel syndrome and trigger digit: common diagnoses that occur "hand in hand". J Hand Surg Am, 2013. 38(8): p. 1635-7.
41. Cobb, T.K., K.-N. An, and W.P. Cooney, Externally applied forces to the palm increase carpal tunnel pressure. The Journal of hand surgery, 1995. 20(2): p. 181-185.
42. Gelberman, R.H., et al., Tissue pressure threshold for peripheral nerve viability. Clinical orthopaedics and related research, 1983(178): p. 285-291.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw