進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908201911233400
論文名稱(中文) 以有限元素法分析次級加勁擋土牆在靜態與動態下行為之研究
論文名稱(英文) Behavior of Geosynthetic-Reinforced Retaining Wall under Static and Dynamic Conditions with Secondary Reinforcement using Finite Element Method
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 吳秉儒
研究生(英文) Bing-Ru Wu
學號 N66064307
學位類別 碩士
語文別 中文
論文頁數 102頁
口試委員 指導教授-洪瀞
召集委員-楊國鑫
口試委員-黃景川
口試委員-洪汶宜
中文關鍵字 加勁擋土牆  次級加勁材  有限元素分析  動態分析  靜態分析 
英文關鍵字 geosynthetic-reinforced retaining wall  secondary reinforcement  finite element analysis  dynamic analysis  static analysis 
學科別分類
中文摘要 加勁擋土結構常用設計垂直間距為0.6公尺,而這個相對較大的間距易導致加勁材與牆面連接張力過大。因此,在工程設計上衍生出次級加勁材的概念,意指在主加勁層之間鋪設較短的加勁材,目的就是為了減緩主加勁材軸力。雖然這項設計方法逐漸應用在實驗與工程上,並且證實了在施工應力(靜態載重)條件下得到很好的結果,但對於次加勁層的抗震效果與主加勁層關係之相關研究仍舊不足。有鑑於此,本文以二維有限元素法分析程式PLAXIS進行數值分析,對次級加勁擋土工程案例進行靜態分析,將模擬結果與工程監測值相互比對來進行參數驗證,探討準確度和可能導致誤差之原因。接著,對振動台試驗進行動態分析可靠性驗證,確認動態分析過程與動態邊界條件。最後,探討有無次級加勁材之擋土牆抗震能力表現,與牆高、主加勁材長度關係,以及不同地震力作用下最大牆位移、加勁材軸力與沉陷量之相關性程度。
研究結果顯示,在靜態方面,證實次加勁層在施工應力條件下能夠降低最大加勁材軸力、牆位移等,有助於提升整體結構穩定性。在動態方面,次級加勁層在地震力作用下可有效減緩主加勁材軸力,在不同牆高與主加勁材長度條件下可減緩比例約5-35%,大幅降低因主加勁材軸力過大而產生破壞之可能性,但對於牆位移與沉陷量影響相對較小。在次加勁材長度固定為1.3公尺之條件下,次加勁材抗震效果隨設計牆高增加而減少,主要原因為主加勁材與次加勁材長度差距過大,造成受地震力作用後,次級加勁擋土牆表現與無次級加勁擋土牆結果會較為相近。
在模擬多組不同參數之模型後可發現,在不同地震力作用下,相同模型會具有類似趨勢之結果,且最大牆位移、最大加勁材軸力以及最大沉陷量三者彼此成高度相關。因此,在相同的工程設計下,可由其中一項監測結果來初步推估其餘兩項數據值。藉由數值分析快速模擬不同參數與地震統計結果,提供未來設計與預測之方法,更顯現出數值分析在耐震設計之重要性。
英文摘要 Applications of geosynthetic reinforcements are commonly designed with a vertical spacing of 0.6 meters. This relatively large spacing may lead to a high reinforcement connection strength and result in connection failure. To alleviate the primary reinforcement axial force, secondary reinforcements set between primary reinforcement have recently been utilized. Such design has been proved to show some good performance under working stresses, however, the research on the seismic effect of the secondary reinforcement layer and the relationship between the primary reinforcement layer are still lacking. This study aims to investigate the effect of secondary reinforcement under static and dynamic conditions. Seismic behaviors of retaining wall with or without secondary reinforcement are evaluated and discussed considering various wall heights and primary reinforcement lengths.
Under the static condition, the results show that the secondary reinforcement layers can reduce both the maximum axial force of primary reinforcement and the wall displacement under construction stresses, capable of improving the overall stability of geosynthetic-reinforcement soil structures. Under the dynamic condition, the secondary reinforcement can effectively reduce the axial force of the primary reinforcement, greatly reducing the possibility of damages caused by the excessive axial force of the main reinforcement. It is also revealed that secondary reinforcement has a relatively small impact on the displacement and settlement of the walls.
論文目次 目錄

摘要 iii
Extended Abstract iv
致謝 viii
目錄 ix
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法及內容 2
1.3 論文架構 3
第二章 文獻回顧 5
2.1 前言 5
2.2 次級加勁擋土牆 6
2.3 加勁擋土結構動態分析 9
2.3.1 解析解與經驗公式 9
2.3.2 加勁擋土結構動態試驗 11
2.3.3 加勁擋土結構動態數值分析 17
第三章 數值分析方法 25
3.1 PLAXIS程式簡介 26
3.2 組成律模型 28
3.3 靜態分析 37
3.3.1 靜態荷載 37
3.3.2 階段性施工 37
3.3.3 邊界條件 38
3.4 動態分析 38
3.4.1 材料阻尼比 38
3.4.2 動態邊界條件 40
3.4.3 時間步長 42
3.4.4 地震資料處理與輸入 42
第四章 案例驗證分析 45
4.1 工程案例靜態分析驗證 45
4.1.1 工程案例簡介 45
4.2 模型建立 47
4.3 材料參數 49
4.3.1 土壤性質 49
4.3.2 加勁材性質 51
4.3.3 介面元素 51
4.4 數值分析與監測結果比較 52
4.4.1 牆面側位移 52
4.4.2 最大加勁材軸力分佈 53
4.4.3 側向土壓力 54
4.4.4 垂直土壓力 55
4.4.5 小結 56
4.5 振動台實驗動態分析驗證 56
4.5.1 案例簡介 56
4.5.2 材料參數 59
4.5.3 數值分析與實驗結果比較 60
4.5.4 小結 63
第五章 次級加勁擋土牆受震分析 64
5.1 建立設計模型 64
5.2 地震動輸入 67
5.3 模擬結果與討論 70
5.3.1 有無次級加勁層擋土牆模型參數分析 70
5.4 不同地震力之影響規律分析 85
5.4.1 最大位移與最大加勁材軸力 86
5.4.1 最大位移與最大沉陷 88
5.4.2 最大沉陷與最大加勁材軸力 90
第六章 結論與建議 94
6.1 結論 94
6.2 建議 96
參考文獻 97

參考文獻 參考文獻
周銘瑋 (2009),「以有限元素程式Plaxis分析加勁擋土結構之力學行為(含潛變效應)」,碩士論文,國立宜蘭大學土木工程研究所,宜蘭。
陳毅修 (2014),「加勁擋土牆側向承載力與破壞機制研究」,碩士論文,國立台灣科技大學土木工程研究所,台北。
唐嘉禧 (2016),「有限元素法分析加勁擋土牆內加速度放大反應」,碩士論文,國立台灣科技大學土木工程研究所,台北。
Ausilio, E., E.Conte, and G.Dente.(2000)“Seismic Stability Analysis of Reinforced Slopes.” Soil Dynamics and Earthquake Engineering 19(3): 159–72.
Bathurst, R. J., Y.Miyata, A.Nernheim, and A. M.Allen.(2008). “Refinement of K-Stiffness Method for Geosynthetic-Reinforced Soil Walls.” Geosynthetics International 15(4): 269–95.
BELAL, A. M., & George, K. P. (2000). Finite element analysis of reinforced soil retaining walls subjected to seismic loading. In Proceedings of 12th World Conference Earthquake Engineering.
Bhattacharjee, A., & Krishna, A. M. (2015). Strain behavior of backfill soil in rigid faced reinforced soil walls subjected to seismic excitation. International Journal of Geosynthetics and Ground Engineering, 1(2), 14.
Cai, Z. and Bathurst, R.J. (1996) “Seismic response analysis of geosynthetic reinforcement soil segmental retaining walls by finite element method”, Soil Dynamics and Earthquake Engineering, Vol.15,,pp.255-268.
Clough, R. W., & Penzien, J. (1975). Structural dynamics. McGrowHill Inc, New York zbMATH.
Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of Soil Mechanics & Foundations Div.
El-Emam, Magdi M., and Richard J. Bathurst. (2007). “Influence of Reinforcement Parameters on the Seismic Response of Reduced-Scale Reinforced Soil Retaining Walls.” Geotextiles and Geomembranes 25(1): 33–49.
G. Madhavi Latha, P. Santhanakumar(2015)Seismic response of reduced-scale modular block and rigid faced reinforced walls through shaking table tests.Geotextiles and Geomembranes 43 (2015) 307-316
Han, J., & Leshchinsky, D. (2006). General analytical framework for design of flexible reinforced earth structures. Journal of geotechnical and geoenvironmental engineering, 132(11), 1427-1435.
Hashimoto, H., Ling, H.I., Cardany, C.P. and Sun, L-X. (2000) “Finite E Lement Study of a Geosynthetic Reinforced Soil Retaining Wall With Concrete Block Facing.” Geosynthetics International 7(2): 137–62.
Hatami, K., Bathurst, R. J., & Pietro, P. D. (2001). Static response of reinforced soil retaining walls with nonuniform reinforcement. International Journal of Geomechanics, 1(4), 477-506.Papadrakakis, M., & Fragiadakis, M. (2017). REVIEW OF SEISMIC PERFORMANCE OF GEOSYNTHETIC REINFORCED SOIL RETAINING WALLS.
Janbu, N. (1963). Soil compressibility as determined by odometer and triaxial tests. In Proc. Europ. Conf. SMFE (Vol. 1, pp. 19-25).
Jiang, Y., Han, J., Parsons, R. L., & Brennan, J. J. (2016). Field instrumentation and evaluation of modular-block MSE walls with secondary geogrid layers. Journal of Geotechnical and Geoenvironmental Engineering, 142(12), 05016002.
Jiang, Y., Han, J., Zornberg, J., Parsons, R. L., Leshchinsky, D., & Tanyu, B. (2018). Numerical analysis of field geosynthetic-reinforced retaining walls with secondary reinforcement. Géotechnique, 69(2), 122-132.
Kianoosh Hatami and Richard J. Bathurst (2005) Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions
Krishna, A. M., & Latha, G. M. (2011). Modeling the dynamic response of wrap-faced reinforced soil retaining walls. International Journal of Geomechanics, 12(4), 439-450.
Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.
Kuwano, J., Y.Miyata, and J.Koseki. (2014) “Performance of Reinforced Soil Walls during the 2011 Tohoku Earthquake.” Geosynthetics International 21(3): 179–96.
Latha, G. Madhavi, and P.Santhanakumar. (2015). “Seismic Response of Reduced-Scale Modular Block and Rigid Faced Reinforced Walls through Shaking Table Tests.” Geotextiles and Geomembranes 43(4): 307–16.
Lelli, Matteo, Riccardo Laneri, and PietroRimoldi. (2015). “Innovative Reinforced Soil Structures for High Walls and Slopes Combining Polymeric and Metallic Reinforcements.” Procedia Engineering 125: 397–405.
Leshchinsky, D., Kang, B., Han, J., & Ling, H. (2014). Framework for limit state design of geosynthetic-reinforced walls and slopes. Transportation Infrastructure Geotechnology, 1(2), 129-164.
Leshchinsky, D. (2000). “Alleviating connection load.” Geotechnical Fabrics Rep.,Industrial Fabrics Association International, St Paul, MN.
Leshchinsky, D., and Han, J. (2004). “Geosynthetic reinforced multitiered mechanically walls.”J.Geotech.Geoenviron.Eng.,10.1061/(ASCE)1090-0241 (2004)130:12(1225), 1225–1235.
Leshchinsky, D., Kang, B. J., Han, J., and Ling, H. I. (2014). “Framework for limit state design of geosynthetic-reinforced walls and slopes.”Transp. Infrastruct. Geotechnol., 1(2), 129–164.
Ling, H. I., Liu, H., & Mohri, Y. 〖(2005)〗_a. Parametric studies on the behavior of reinforced soil retaining walls under earthquake loading. Journal of engineering mechanics, 131(10), 1056-1065.
Ling, Hoe. I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K., & Liu, H. 〖(2005)〗_b. Large-scale shaking table tests on modular-block reinforced soil retaining walls. Journal of Geotechnical and Geoenvironmental engineering, 131(4), 465-476.
Ling, H. I., Yang, S., Leshchinsky, D., Liu, H., & Burke, C. (2010). Finite-element simulations of full-scale modular-block reinforced soil retaining walls under earthquake loading. Journal of engineering mechanics, 136(5), 653-661.
Ling, H. I., Liu, H., Kaliakin, V. N., & Leshchinsky, D. (2004). Analyzing dynamic behavior of geosynthetic-reinforced soil retaining walls. Journal of Engineering Mechanics, 130(8), 911-920.
Liu, H. (2016). Nonlinear elastic analysis of reinforcement loads for vertical reinforced soil composites without facing restriction. Journal of Geotechnical and Geoenvironmental Engineering, 142(6), 04016013.
Liu, H., Hung, C., & Cao, J. (2018). Relationship between Arias intensity and the responses of reinforced soil retaining walls subjected to near-field ground motions. Soil Dynamics and Earthquake Engineering, 111, 160-168.
Liu, H., Yang, G., & Ling, H. I. (2014). Seismic response of multi-tiered reinforced soil retaining walls. Soil Dynamics and Earthquake Engineering, 61, 1-12.
Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 95(4), 859-878.
Masing, L., & Young, L. (1962). Kinetics of formation of anodic oxide films on bismuth. Canadian Journal of Chemistry, 40(5), 903-920.
Moradi, G. (2014). Seismic response analysis of geosynthetic reinforced soil retaining wall. Electronic Journal of Geotechnical Engineering, 19, 3819-3835.
Murali Krishna, A., and G.Madhavi Latha. (2009) “Seismic Behaviour of Rigid-Faced Reinforced Soil Retaining Wall Models: Reinforcement Effect.” Geosynthetics International 16(5): 364–73.
Nelson, A., & Jayasree, P. K. (2010). Seismic Response of Reinforced Soil Retaining Walls with Block Facings.
Nova-Roessig, Lili, and NicholasSitar. 2006. “Centrifuge Model Studies of the Seismic Response of Reinforced Soil Slopes.” Journal of Geotechnical and Geoenvironmental Engineering 132(3): 388–400.
NTPEP (2011), “ECP User Guide,” National Transportation Product Evaluation Program, AASHTO.
Panah, A. K., Yazdi, M., & Ghalandarzadeh, A. (2015). Shaking table tests on soil retaining walls reinforced by polymeric strips. Geotextiles and Geomembranes, 43(2), 148-161.
Pierson, M. C., Parsons, R. L., Han, J., & Brennan, J. J. (2010). Laterally loaded shaft group capacities and deflections behind an MSE wall. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 882-889.
Plaxis.(2019) Reference and Material Model Manual . Plaxis bv ,Netherland.
Mirlatifi, S. A., Fakher, A., & Ghalandarzadeh, A. (2007, June). Seismic study of reinforced earth walls by shaking table model tests. In 4th International Conference on Earthquake Geotechnical Engineering (pp. 25-28).
Von Soos, P. (1990). Properties of Soil and Rock (in German), Grundbau Taschenbuch Part 4. Ernst & Sohn, Berlin.
Wang, L. Y., & Iai, S. (2014). Numerical study on seismic performances of geogrid reinforced soil retaining walls in liquefiable backfill sand. Journal of Engineering Science and Technology Review, 7(1), 109-115.
Yang, K. H., Hung, W. Y., & Kencana, E. Y. (2013). Acceleration-amplified responses of geosynthetic-reinforced soil structures with a wide range of input ground accelerations. In Geo-Congress 2013: Stability and Performance of Slopes and Embankments III (pp. 1178-1187).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw