進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908201605105400
論文名稱(中文) 白光量子點有機發光二極體之相關優化設計
論文名稱(英文) Optimization of Quantum dot-Embedded Organic Light-Emitting Diodes for Efficient White Light Emission
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 104
學期 2
出版年 105
研究生(中文) 謝建緯
研究生(英文) Chien-Wei Hsieh
學號 q16031186
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-莊文魁
口試委員-張守進
口試委員-尤信介
口試委員-薛丁仁
口試委員-陳永鋒
中文關鍵字 有機發光二極體  量子點  白光  實驗設計  能量轉換 
英文關鍵字 Organic Light-Emitting Diode  Quantum dot  white light  design of experiment  energy transfer 
學科別分類
中文摘要 Tang和Vanslyke在1987年對於多層有機發光二極體所提出的論述,引起許多人開始對這一領域感到興趣。多層有機發光二極體在當時所佔的優勢有,厚度薄、亮度高、自發光、視角寬廣以及可應用於全彩化,而這些優勢也確確實實讓有機發光元件在平面顯示器上有著無可限量的應用。
量子點為一種奈米微晶體的半導體材料,由II-VI族、III-V族或IV-VI族元素所組成。量子點晶體的直徑約在2~10奈米,比一般塊狀半導體材料小。因其具有寬廣的吸收光譜,而其輸出的頻寬卻非常窄且集中,這些特性,使量子點所放出的光比起螢光基團激發出的光有更寬廣的波長範圍且可自由選擇。因此近年來很多人將量子點應用在有機發光元件上,並得到很多不錯的結果。因此本篇論文之目的在於將量子點應用在藍光有機發光元件上,使其發出白光並優化之。由於白光有著眾多的應用,如全彩化技術之應用與液晶顯示器的背光源等,所以比起其他的色光,白光尤為重要。我們將探討如何能使量子點有機發光元件更有效率的放出白光。
我們藉由將各有機層厚度改變來找出藍光有機發光元件的最佳化參數,其中在濕式製程部分我們嘗試的旋轉塗佈參數有2000RPM、3000RPM、4000RPM和5000RPM四種,蒸鍍製程則將TPBI的厚度做30nm、40nm與50nm的改變。將優化過的藍光元件結構發光層部分混入不同體積比例的量子點溶液,最終得到所發的光在CIE座標上(0.29,0.29)位置且最大發光效率約達0.5cd/A的白光元件。並且為了能使此元件的效率有所提升,我們試著透過DOE的分析方法來探討元件各層厚度變化對元件效率的影響,尋找進一步提升元件效率的規則。
英文摘要 QDs have the favorable properties like color-tunability, wide emission wavelength window, and others. Recently, an increasing number of people have achieved significant results by incorporating QDs into OLED. The current thesis is mainly focused on applying QDs to the blue OLED and making it to emit white light efficiently. Because there are so many applications that involve white light such as full-color tech and the backlight for displays, the importance of white light appears to outweigh the other light sources in many situations. It is therefore strategically beneficial to boost the white light emission by embedding quantum dots into the organic light-emitting devices.
The OLED for blue light emission is optimized by changing the thickness of each organic layer in the device, and the parameters of spin coating process adopted are 2000, 3000, 4000 and 5000 RPM, then the layer for TPBI is evaporated with three different thicknesses, namely 30, 40, and 50nm. By mixing quantum dot solution with different volume ratios into the emissive layer of an optimized blue-emitting device in order to enhance the energy transfer from donor to acceptor, white light emission with CIE chromaticity coordinates of (0.29,0.29) and a maximum current efficiency of 0.5 cd/A are all successfully obtained. Finally, the efficiency of blue OLED can be further optimized for the ultimate benefit of enhancing the performance of the white light device by adopting a set of procedures based on the concept of the design of experiment (DOE). With this DOE approach, the optimized thicknesses of several crucial layers involved in the blue OLED can be duly realized.

論文目次 中文摘要 I
英文摘要 III
致謝 VIII
目錄 X
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1-1 有機發光元件歷史簡述 1
1-2 白光有機二極體及其應用 2
1-2-1 有機發光元件放出白光的主要方法 2
1-2-2 對於白光源幾項判斷其品質的主要參數 3
1-3 量子點發光二極體元件(QLED Devices)發展 4
1-3-1 量子點簡介 4
1-3-2 有機發光二極體和量子點發光二極體 5
參考文獻 8
第二章 原理探討 10
2-1 重要定義以在不同元件間做比較與描述 10
2-2 OLED發光機制 11
2-2-1 螢光材料發光機制 11
2-2-2 有機磷光材料發光機制 12
2-2-3 螢光和磷光放光機制與非輻射衰退能量 13
2-2-4 摻雜系統中之能量轉移發光機制 15
2-2-5 摻雜螢光材料元件其主客發光體之能量轉移 18
2-2-6 摻雜磷光材料元件其主客發光體之能量轉移 19
2-2-7 熱啟動延遲螢光(TADF) 20
2-3 量子侷限效應(Effect of Quantum Confinement) 22
2-4 量子點激發機制 23
參考文獻 25
第三章 實驗過程 29
3-1 ITO玻璃之微影與蝕刻 29
3-2 發光元件製作過程 30
3-2-1 基板清洗 30
3-2-2 旋轉塗佈元件 31
3-2-3 有機薄膜蒸鍍 32
3-2-4 金屬電極沉積 33
3-2-5 量測作業 33
3-3 有機材料與試藥調配 33
參考文獻 38
第四章 結果與討論 39
4-1 實驗I 39
4-1-1 實驗I A部分-電洞注入層厚度變化對元件的影響 40
4-1-2 實驗I B部分-發光層厚度變化對元件的影響 43
4-1-3 實驗I C部分-電洞傳輸層厚度變化對元件的影響 47
4-1-4 實驗I D部分-電洞阻擋層厚度變化對元件的影響 50
4-2 實驗II 53
4-3 實驗III 61
參考文獻 68
第五章 結論 71

參考文獻 第一章
[1] M. Pope, H. P. Kallmann, and P. Magnante, "Electroluminescence in Organic Crystals," J. Chem. Phys., vol. 38, p. 2042, 1963.
[2] W. Helfrich and W. G. Schneider, "Recombination Radiation in Anthracene Crystals," Phys. Rev. Lett. , vol. 14, p. 229, 1965.
[3] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett., vol. 51, p. 913, 1987.
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, et al., "Light-emitting diodes based on conjugated polymers," Nature, vol. 347, pp. 539–541, 1990.
[5] Franky So, Junji Kido, and Paul Burrows, "Organic Light-Emitting Devices for Solid-State Lighting," MRS Bulletin, vol. 33, pp. 663-669, 2008.
[6] Gianluca M. Farinola and R. Ragni., "Electroluminescent materials for white organic light emitting diodes," Chem. Soc. Rev., vol. 40, pp. 3467–3482, 2011.
[7] B.W. D'Andrade and S. R. Forrest, "White Organic Light-Emitting Devices for Solid-State Lighting," Advanced Materials, vol. 16, 2004.
[8] Poopathy Kathirgamanathan, Lisa M. Bushby, Muttulingam Kumaraverl, Seenivasagam Ravichandran, and Sivagnanasundram Surendrakumar, "Electroluminescent Organic and QuantumDot LEDs : The State of the Art," JOURNALOFDISPLAYTECHNOLOGY, vol. 11, pp. 485-489, 2012.
[9] J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays," Opt.Mater.Express, vol. 2, pp. 594–628, 2012.
[10] Jaehoon Lim, Myeongjin Park, Wan Ki Bae, Donggu Lee, Seonghoon Lee, Changhee Lee, et al., "Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots," ACS Nano, vol. 7, pp. 9019–9206, 2013.

第二章
[1] 林云琦, "Synthesis and Characterization of Bipolar Hosts for Blue," 國立交通大學應用化學研究所 2008.
[2] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature vol. 395, pp. 151-154, 1998.
[3] Vicki Cleave, Goghan Yahioglu, Pierre Le Barny, Richard H. Friend, and N. Tessler, "Harvesting Singlet and Triplet Energy in Polymer LEDs," Adv. Mater., vol. 11, pp. 285-288, 1999.
[4] Baldo M. A., Lamansky S., Burrows P. E., Thompson M. E., and Forrest S. R., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters, vol. 75, 1999.
[5] D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Improved energy transfer in electrophosphorescent devices," APPLIED PHYSICS LETTERS, vol. 74, pp. 442-444, 1999.
[6] Adachi Chihaya, Baldo Marc A., Thompson Mark E., and Forrest Stephen R., "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," Journal of Applied Physics, vol. 90, pp. 5048-5051, 2001.
[7] 簡辰翰, "Molecular Emitters Containing Charge Transporting Units for Organic Electroluminescent Devices," 國立交通大學應用化學研究所博士論文, 2010.
[8] Phosphorimetry, http://slideshare.net/HomeAyesha/phosphorimetry
[9] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," J. Appl. Phys., vol. 65, pp. 3610-3616, 1989.
[10] Yanqin Li, Aurora Rizzo, Marco Mazzeo, Luigi Carbone, Liberato Manna, Roberto Cingolani, et al., "White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter," J. Appl. Phys., vol. 97, p. 113501, 2005.
[11] Cheng Ping-Chin, The Contrast Formation in Optical Microscopy, 2006.
[12] Helms Volkhard, Fluorescence Resonance Energy Transfer, 2008.
[13] D.L. Andrews, "A unified theory of radiative and radiationless molecular energy transfer," Chemical Physics, vol. 135, pp. 195-201, 1989.
[14] David L Andrews and David S Bradshaw, "Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach," Eur. J. Phys., vol. 25, pp. 845–858, 2004.
[15] D. L. Dexter, "A Theory of Sensitized Luminescence in Solids," J. Chem. Phys. , vol. 21, 1953.
[16] Steffan Cook, Ruyzi Katoh, and Akihiro Furube, "Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM," J. Phys. Chem. C, vol. 113, pp. 2547–2552, 2009.
[17] Paul E. Shaw, Arvydas Ruseckas, and I. D. W. Samuel, "Exciton Diffusion Measurements in Poly(3-hexylthiophene)," Adv. Mater., vol. 20, pp. 3516-3520, 2008.
[18] X. Cheng, K. Ichimura, D. Fichou, and T. Kobayashi, "Nanosecond time-resolved absorption spectra of thin films of α-conjugated thiophene oligomers," CHEMICAL PHYSICS LETTERS vol. 185, pp. 286-291, 1991.
[19] Steffan Cook, Hideo Ohkita, James R. Durrant, Youngkyoo Kim, Jessica J. Benson-Smith, Jenny Nelson, et al., "Singlet exciton transfer and fullerene triplet formation in polymer-fullerene blend films," Appl. Phys. Lett. , vol. 89, p. 101128, 2006.
[20] Richard R. Lunt, Noel C. Giebink, Anna A. Belak, Jay B. Benziger, and Stephen R. Forrest, "Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching," J. Appl. Phys., vol. 105, p. 053711, 2009.
[21] Krishna Feron, Warwick J. Belcher, Christopher J. Fell, and Paul C. Dastoor, "Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer," Int. J. Mol. Sci., vol. 13, p. 17027, 2012.
[22] Hiroki Uoyama, Kenichi Goushi, Katsuyuki Shizu, Hiroko Nomura, and Chihaya Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," N AT U RE vol. 492, pp. 236-240, 2012.
[23] Poopathy Kathirgamanathan, Lisa M. Bushby, Muttulingam Kumaraverl, Seenivasagam Ravichandran, and Sivagnanasundram Surendrakuma, "ElectroluminescentOrganicandQuantumDotLEDs: The State of the Art " JOURNALOFDISPLAYTECHNOLOG, vol. 11, pp. 480-491, 2015.
[24] Yasuhiro Shirasaki, Geoffrey J. Supran, Moungi G. Bawendi, and Vladimir Bulović, "Emergence of colloidal quantum-dot light-emitting technologies " NATURE PHOTONICS vol. 7, p. 17, 2012.

第三章
[1] Lumtec, http://lumtec.com.tw/
[2] American Dye Source Inc, www.adsdyes.com/
[3] Sigma-Aldrich Corporation, https://www.sigmaaldrich.com/
[4] e-Ray Optoelectronics Technology, www.eray-tech.com/
[5] Wan Hsiang Precision Machinery Co. Department of Optoelectronic, http://www.oled-material.com/index.html

第四章
[1] B. Boudjema, G. Gérard, G. Maxime, M. Monique, A. Jean‐Jacques, M. Michel, et al., "Characterization of metallophthalocyanine‐metal contacts: Electrical properties in a large frequency range," J. Appl. Phys., vol. 56, p. 2323, 1984.
[2] K. Narayan, S. Varadharajaperumal, G. Mohan Rao, M. Manoj Varma, and T. Srinivas, "Effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes," Current Applied Physics, vol. 13, pp. 18-25, 2013.
[3] N. C. Giebink and S. R. Forrest, "Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes," Phys. Rev., vol. 77, p. 235215, 2008.
[4] Y. Yin, W. Xuemei, Y. Jing, Z. Letian, and X. Wenfa, "Influence of Thickness on Performance of Blue Single-Layer Organic Light-Emitting Device," IEEE Photonics Technology Letters, vol. 25, pp. 2205 - 2208, 2013.
[5] Baijun CHEN, Chun-sing LEE, Shuit-tong LEE, Patrick WEBB, Yan-cheong CHAN, William GAMBLING, et al., "Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials," Jpn. J. Appl. Phys., vol. 39, pp. 1190–1192, 2000.
[6] Shigeki Naka, Hiroyuki Okada, Hiroyoshi Onnagawa, Yoshihisa Yamaguchi, and Tetsuo Tsutsui, "Carrier transport properties of organic materials for EL device operation," Synthetic Metals, vol. 111–112, pp. 331–333, 2000.
[7] D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, "Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss," J. Appl. Phys. , vol. 93, p. 1108, 2003.
[8] Popovic Zoran D, Aziz Hany, Hu Nan-Xing, Ioannidis Andronique, and dos Anjos Paulo N. M., "Simultaneous electroluminescence and photoluminescence aging studies of tris(8-hydroxyquinoline) aluminum-based organic light-emitting devices," J. Appl. Phys., vol. 89, pp. 4673-4675, 2001.
[9] C.J. Huanga, C.C. Kangb, T.C. Leec, W.R. Chend, and T.H. Meend, "Improving the color purity and efficiency of blue organic light-emitting diodes (BOLED) by adding hole-blocking layer," Journal of Luminescence, vol. 129, pp. 1292-1297, 2009.
[10] S. E. Shaheen, B. Kippelen, N. Peyghambarian, J. F. Wang, J. D. Anderson, E. A. Mash, et al., "Energy and charge transfer in organic light-emitting diodes: A soluble quinacridone study," J. Appl. Phys, vol. 85, pp. 7939-7945, 1999.
[11] Burak Guzelturk, Pedro Ludwig Hernandez Martinez, Dewei Zhao, Xiao Wei Sun, and Hilmi Volkan Demir, "Singlet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Molecules," J. Phys. Chem. C, vol. 118, pp. 25964-25969, 2014.
[12] Hongbin Wu , Lei Ying , Wei Yang, and Yong Cao "Progress and perspective of polymer white light-emitting devices and materials," Chem. Soc. Rev, vol. 38, pp. 3391-3400, 2009.
[13] Gang Cheng, Wei Lu, Yong Chen, and Chi-Ming Che, "Hybrid light-emitting devices based on phosphorescent platinum(II) complex sensitized CdSe/ZnS quantum dots," OPTICS LETTERS, vol. 37, pp. 1109-1111, 2012.
[14] Yu Xuan, Daocheng Pan, Nana Zhao, Xiangling Ji, and Dongge Ma, "White electroluminescence from a poly(N-vinylcarbazole) layer doped with CdSe/CdS core–shell quantum dots," Nanotechnology, vol. 17, pp. 4966–4969, 2006.
[15] Francesco Babudri, Gianluca M. Farinola, Francesco Naso, and Roberta Ragnia "Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom," Chem. Commun, pp. 1003-1022, 2007.
[16] Roberta Ragni, Edward A. Plummer, Klemens Brunner, Johannes W. Hofstraat, Francesco Babudri, Gianluca M. Farinola, et al., "Blue emitting iridium complexes: synthesis, photophysics and phosphorescent devices," J. Mater. Chem., vol. 16, pp. 1161-1170, 2006.
[17] Hisahiro Sasabe, Jun-ichi Takamatsu, Takao Motoyama, Soichi Watanabe, Gerhard Wagenblast, Nicolle Langer, et al., "High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex," Adv. Mater., vol. 22, pp. 5003–5007, 2010.
[18] C. Daniel, "Applications of Statistics to Industrial Experimentation", Wiley, 1976.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw