進階搜尋


下載電子全文  
系統識別號 U0026-1908201517275600
論文名稱(中文) 海岸山脈三仙台地區火山角礫岩之地球化學研究
論文名稱(英文) Geochemical significance of volcanic breccias from Sansiantai, Eastern Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 103
學期 2
出版年 104
研究生(中文) 黃銘正
研究生(英文) Ming-Zheng Huang
學號 L46024026
學位類別 碩士
語文別 英文
論文頁數 98頁
口試委員 指導教授-楊懷仁
口試委員-何恭算
口試委員-蕭炎宏
中文關鍵字 海岸山脈  三仙台  安山岩  火山角礫岩  地球化學  結晶分化 
英文關鍵字 Coastal Range  Sansiantai  Andesite  Volcanic breccia  Geochemistry  fractional crystallization 
學科別分類
中文摘要 出露於台灣東部海岸山脈之火成岩紀錄了北呂宋島弧(North Luzon Arc)早期的火成作用。然而台灣高溫多雨之氣候使此區域之火成岩普遍呈現嚴重的蝕變,弧陸碰撞所造成之劇烈抬升以及擠壓亦造成古火山體的破壞與變形。採樣上的困難導致海岸山脈火成岩之相關研究極為稀少。Lai and Song (2013) 結合火山岩相分析、海洋測深學以及同位素等分析,判定海岸山脈火成岩分屬四座火山,但此四座火山火成岩之地球化學特性以及火成作用演化史(petrogenetic evolution)仍有待釐清。三仙台位於海岸山脈中南段的海岸線上,座落於成功盆地,並毗鄰上述四座火山中之成廣澳火山。台灣地質調查所將三仙台標示為外來岩塊(transported blocks),但出露於此之火成岩較海岸山脈其餘區域之樣本新鮮,因此其地球化學特性或可提供海岸山脈火成作用演化史之制約。
均質性與異質性的安山岩塊分別散佈於海岸山脈沿岸:三仙台地區及三仙台島上。兩類角礫岩皆鑲嵌於凝灰岩質的基質中,均質性角礫岩多為黑色且相對新鮮的岩塊,而異質性角礫岩顏色不一,推測其可能源自不同期的噴發或受控於基質中蝕變礦物之差異。由野外產狀以及岩相推論此地之火山角礫岩為火山碎屑流堆積之結果。結晶分化之模擬結果顯示斜輝石之結晶分化可解釋異質性火山角礫岩之微量元素變化。而透過同位素特性的比較則指示三仙台樣本與海岸山脈之火成岩之源區截然不同。因此三仙台之來源仍屬未定。 藉由源區混染之模擬計算,三仙台樣本之同位素特性顯示其源區可解釋為菲律賓海板塊之貧脊地函受南中國海自生性(authigenic)沉積物交代換質之結果。而其餘北呂宋島弧之樣本,如綠島(Hung, 2009)、蘭嶼或菲律賓之南島(Marini et al., 2005)等,皆須由不同形式之交代換質作用來解釋,且部分樣本之同位素特性應考慮蝕變海洋地殼對源區之影響。
英文摘要 Geochemical studies on the lavas from the northern end of the North Luzon arc (NLA) at eastern Taiwan are scarce and have rarely been included in the NLA evolution history. Lai and Song (2013) combined lithofacies analysis, bathymetric and isotopic data to propose four volcanic centers in the Coastal Range. However, the geochemical features and significance of these volcanic
rocks have not been addressed in detail. In addition to those in the Coastal Range, volcanic breccias also occur ~8 km east of the middle-south section of the Coastal Range on the coastline at Sansiantai (SST). These volcanic breccias are fresher but have been inferred as exotic blocks with unidentified source. In this study, the petrography, mineral chemistry, major and trace
elements, and Sr-Nd-Hf isotopic compositions of the volcanic rocks from SST were determined and compared to those of the lavas from the aforementioned volcanic centers to trace the sources. The SST volcanic rocks are characterized by breccias of centimeter to meter size imbedded in greenish or brownish tuff. Based on their colors, these breccias were tentatively classified into “monolithologic” and “polylithologic” types. The monolithologic breccias (MB) are relatively fresh and mainly blackish, while the polylithologic breccias (PB) are characterized by varying colors, possibly representing products from different eruptive episodes. The tuff samples were also analyzed to provide constraints on the genesis of the breccias. The SST volcanic rocks contain olivine, plagioclase and two pyroxene phenocrysts without hornblende, contrasting to the occurrence of hornblende phenocrysts in the samples from the Coastal Range. The tuff, however, contains higher proportions of clay minerals, reflecting higher degrees of alteration. The outcrop occurrences and the petrography in the section where tuff and breccias intersected suggested a pyroclastic flow origin for the SST volcanic rocks. Sansiantai is adjacent to the Chengkuangao volcano. Nevertheless, the differences in major element and trace element compositions as well as isotopic signatures between Sansiantai and Chengkuangao samples (Lai, 2012) imply distinct magmatic sources. The compositional variations and fractional crystallization modeling also suggest that the volcanic rocks from the four volcanoes and the SST area cannot be related to each other by fractional crystallization processes. Source contamination modeling suggests that the isotopic signatures of Sansiantai samples can be explained by addition of authigenic sediment components into the depleted mantle. Nevertheless, the role of altered oceanic crust (AOC) is also an essential component in the sources of the NLA lavas.
論文目次 Table of Contents
Chapter 1 Introduction 1
Chapter 2 Geological setting 2
2.1 The North Luzon arc 2
2.1.1 The evolution models of NLA 2
2.1.2 The volcanic rocks from the NLA 6
2.2 The volcanic provinces in the Coastal Range of Taiwan 8
2.3 The volcanic breccias from Sansiantai 10
Chapter 3 Materials and methods 13
3.1 Volcanic rocks from the Coastal Range 13
3.2 Analytical methods 17
Chapter 4 Results 20
4.1 Petrographic textures and mineral compositions 20
4.1.1 Plagioclase 21
4.1.2 Pyroxene 21
4.1.3 Olivine 22
4.1.4 Opaque minerals 22
4.1.5 Alteration products 23
4.1.6 Others 23
4.1.7 Melts inclusions or glassy groundmass 23
4.2 Geochemical variations 28
4.2.1 Major elements 28
4.2.2 Comparisons of XRF and Q-ICP-MS trace elements data 39
4.2.3 Trace elements systematics 39
4.2.4 Isotope compositions 49
Chapter 5 Discussion 53
5.1 The effects of alteration in the Sansiantai volcanic rocks 53
5.2 The modeling the compositional variations from fractional crystallization 56
5.2.1 Fractional crystallization 56
5.2.2 Yuemei samples as the parental melts for fractional crystallization 65
5.2.3 Chimei samples as the parental melts for fractional crystallization 67
5.2.4 Chengkuangao samples as the parental melts for fractional crystallization 69
5.2.5 Fractional crystallization modeling of Sansiantai samples 73
5.3 The origin of the monolithologic breccias: compositional and occurrence constraints 77
5.4 The origin of Sansiantai volcanic breccias 79
5.5 Mixing components in the arc source 81
Chapter 6 Conclusions 88
References 90


List of tables
Table 1 The major oxides (wt. %) of melt inclusions or glassy groundmass 26
Table 2 Major and trace element compositions (anhydrous basis) and isotopic ratios. 30
Table 3 The comparison of trace element data from XRF and Q-ICP-MS 43
Table 4 Partition coefficients used for modeling. 60
Table 5 The geochemical compositions of samples from the Coastal Range. 61
Table 6 The trace element and isotope compositions of the depleted and enriched mixing end-members. 84

List of figures
Fig. 1. The regional geological and tectonic map of NLA 4
Fig. 2. Schematic map illustrating the model of double island arc 5
Fig. 3. Regional geological map of the Coastal Range 11
Fig. 4. The outcrops and occurrences of breccia from Sansiantai 15
Fig. 5. Compositional variations of plagioclase. 24
Fig. 6. Compositional variations of pyroxene.. 24
Fig. 7. Mg# of olivine versus Mg# of liquid 25
Fig. 8. Chemical classifications of the igneous rocks 34
Fig. 9. AFM and SiO2-K2O diagrams 35
Fig. 10. MgO-major oxide variation diagrams. 36
Fig. 11. The MgO-trace element variation diagrams 37
Fig. 12. Comparison of trace element data from XRF and Q-ICP-MS 41
Fig. 13. C1-chondrite normalized REE diagram 46
Fig. 14. Primitive mantle-normalized incompatible element diagrams. 47
Fig. 15. Hf-Lu/Hf diagram.. 48
Fig. 16. 87Sr/86Sr-143Nd/144Nd diagram. 50
Fig. 17. Hf-Nd and Hf-Sr isotope plots. 51
Fig. 18. The isotopic composition plots with the geochronology results. 52
Fig. 19. The Rb-K2O and Ba-Th variation diagrams 55
Fig. 20. The CaO/Al2O3-Mg# diagram 59
Fig. 21. The modeling of fractional crystallization of samples from Yuemei. 66
Fig. 22. The modeling of fractional crystallization of samples from Chimei 68
Fig. 23. The modeling of fractional crystallization of samples from Chimei. 68
Fig. 24. The modeling of fractional crystallization of samples from Chengkuangao. 70
Fig. 25. The modeling of fractional crystallization of samples from Chengkuangao. 72
Fig. 26. The modeling of fractional crystallization of polylithologic breccias from Sansiantai. 75
Fig. 27. The trace elements ratio, Zr-Sm and Sm-Nd plots.. 76
Fig. 28. Sm/Nd-Lu/Hf and Sm/Nd-εNd plots 80
Fig. 29. The source mixing models 1 85
Fig. 30. The source mixing models 2 86
Fig. 31. The source mixing models 3 87
參考文獻 References
Andrews, A. J., Barnett, R. L., Macclement, B. A., Fyfe, W. S., Morrison, G.,
Macrae, N. D. And Strarkey, J., Zeolite facies metamorphism,
geochemistry, and some aspects of trace element redistribution in altered
basalts of DSDP, Leg 37. Initial Reports DSDP, 37, 795-810, 1977.
Anderson A. T., Significance of hornblende in calc-alkaline andesites and
basalts, American Mineralogist, v. 65, p. 837-851, 1980.
Angelo Peccerillo, S. R. Taylor, Geochemistry of eocene calc-alkaline volcanic
rocks from the Kastamonu area, Northern Turkey, contributions to
Mineralogy and Petrology, Volume 58, Number 1, Page 63, 1976.
Bacon, C.R. and Druitt, T.H., Compositional Evolution of the Zoned Calcalkaline
Magma Chamber of Mount-Mazama, Crater Lake, Oregon. Contributions
to Mineralogy and Petrology 98(2): 224-256, 1988.
Bach Wolfgang, Bernhard Peucker-Ehrenbrink, Stanley R. Hart, and Jerzy S.
Blusztajn, Geochemistry of hydrothermally altered oceanic crust:
DSDP/ODP Hole 504B – Implications for seawater-crust exchange
budgets and Sr- and Pb-isotopic evolution of the mantle,
Geochem Geophys Geosyst 3, 8904, 2003.
Barry, T. L., Pearce, J. A., Leat, P. T., Millar, I. L. and le Roex, A. P., Hf isotope
evidence for selective mobility of high-field-strength elements in a
subduction setting: South Sandwich Islands, Earth and Planetary Science
Letters, 252: 223-244, 2006.
Beattie Paul, Olivine-melt and orthopyroxene-melt equilibria, Contrib Mineral
Petrol, 115:103-111, 1993.
Blatt, H., Tracy, R. J., & Owens, B. E., Petrology: igneous, sedimentary, and
metamorphic, Third edition. New York, W.H. Freeman, 2006.
Blichert-Toft, J. and Albarède, F., 1997. The Lu-Hf isotope geochemistry of
chondrites and the evolution of the mantle-crust system. Earth Planet. Sci.
Lett. 148, 243-258. Erratum: Earth Planet. Sci. Lett. 154 1998.
Blong R.J., Volcanic Hazards: A Sourcebook on the Effects of Eruptions,
Academic Press Australia, 424 pp, 1984.
Blyth F. G. H., The nomenclature of pyroclastic deposits, Bulletin
Volcanologique, Volume 6, Issue 1, pp 145-156, 1940.
Bryant E. A., Natural hazards, Cambridge University Press, 1991.
Cann, J.R., Metamorphism in the ocean crust. In: Talwani, M. et al. (eds) Deep
Drilling Results in the Atlantic Ocean: Ocean Crust. Maurice Ewing Series
2, 230-238. American Geophysical Union, 1979.
Cas, R. A. F., and Wright, J. V., Volcanic Successions: Modern and Ancient:
Allen and Unwin, London, 1987.
Chen, C-. H., Shieh, Y-. N., Lee, T., Chen, C. H., and Mertman, S. A., Nd-Sr-O
isotopic evidence for source contamination and an unusual mantle
component under Luzon Arc, Geochimica et Cosmochimica Acta, 54:
2473-2483, 1990.
Chen, J. C. and Huang, C. B., Geochemistry of late Cenozoic andesites from
Taiwan, Proceedings of the National Science Council (ROC), 10: 325-334,
1986.
Calvache V. Marta Lucia and Williams Stanley N., Lithic-dominated pyroclastic
flows at Galeras volcano, Colombia—An unrecognized volcanic hazard,
Geology, v. 20, p. 539-542, 1992.
Deering C.D., Bachmann O., Trace element indicators of crystal accumulation
in silicic igneous rocks, Earth and Planetary Science Letters, Volume 297,
Issues 1–2, Pages 324-331, 2010.
Defant, M. J., Jacques, D., Maury, R. C., Boer, J. D. and Joron, J. L.,
Geochemistry and tectonic setting of the Luzon arc Philippines,
Geological Society of America Bulletin, 101: 663-672, abstract only, 1989.
Defant, M. J., Maury, R. C, Joron, J.-L., Feigenson, M. D., Leterrier, J., Bellon,
H., Jacques, D., & Richard, M., The geochemistry and tectonic setting
of the northern section of the Luzon arc, the Philippines and Taiwan,
Tectonophysics 183: 187-205, 1990.
Fuller C.W., S.D. Willett, D. Fisher, C.Y. Lu, A thermomechanical wedge model
of Taiwan constrained by fission-track thermochronometry,
Tectonophysics, Volume 425, Issues 1–4, 13, 2006.
Flood R. H., R. H. Vernon, S. E. Shaw, B. W. Chappell, Origin of pyroxene-
plagioclase aggregates in a rhyodacite, Contributions to Mineralogy and
Petrology, 1977, Volume 60, Number 3, Page 299, 1977.
Freundt, A., Wilson, C. J. N. and Carey, S. N., Ignimbrites and block-and-ash
flows In: Encyclopedia of volcanoes , ed. by Sigurdsson, H.. Academic
Press, New York, pp. 581-599, 2000.
Ginibre C. and Davidson J. P, Sr Isotope Zoning in Plagioclase from Parinacota
Volcano (Northern Chile): Quantifying Magma Mixing and Crustal
Contamination, J. Petrology 55 (6): 1203-1238, 2014.
Grove, T.L., Kinzler, R.J., Petrogenesis of andesites. Annual Review of Earth
and Planetary Sciences 14, 417–454, 1986.
Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Chatterjee, N., Muntener, O.,
Gaetani,G.A., Fractional crystallization and mantle-melting controls on
calc-alkaline differentiation trends. Contributions to Mineralogy and
Petrology 145(5), 515–533, 2003.
Herzberg, C., and P. D. Asimow, Petrology of some oceanic island basalts:
PRIMELT2.XLS software for primary magma calculation, Geochem.
Geophys. Geosyst., 9, Q09001, 2008.
Hill, E., Wood, B. and Blundy, J., The effect of Ca-Tschermaks component on
trace element partitioning between clinopyroxene and silicate melt. Lithos
53: 203-215, 2000.
Hickey-Vargas Rosemary, Isotope characteristics of submarine lavas from the
Philippine Sea: implications for the origin of arc and basin magmas of the
Philippine tectonic plate, Earth and Planetary Science Letters, Volume
107, Issue 2, Pages 290-304, 1991.
Hickey-Vargas Rosemary, Origin of the Indian Ocean-type isotopic signature in
basalts from Philippine Sea plate spreading centers: An assessment of
local versus large-scale processes, J. Geophys. Res., 103(B9), 20963–
20979, 1998.
Hickey-Vargas Rosemary, M. Bizimis, A. Deschamps, Onset of the Indian
Ocean isotopic signature in the Philippine Sea Plate: Hf and Pb isotope
evidence from Early Cretaceous terranes, Earth and Planetary Science
Letters, Volume 268, Issues 3–4, Pages 255-267, 2008.
Huang C. Y., Yuan P., Tsao S. J., Temporal and spatial records of active arc-
continent collision in Taiwan: a synthesis. Geol. Soc. Am. Bull. 118: 274–
288, 2006.
Hung Yu-chiao, Chemical compositions and Sr-Nd-Hf isotopes of Lutao
volcanic rocks: significances on magmatic processes and source
characteristics, Department of Earth Sciences, Taiwan, National Cheng
Kung University, M.S. Thesis, 2009, in Chinese with English abstract.
Irvine, T.N., and Baragar, W.R.A., A guide to the chemical classification of the
common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p.
523-548, 1971.
Johnson, M. C., and T. Plank, Dehydration and melting experiments constrain
the fate of subducted sediments, Geochem. Geophys. Geosyst., 1, 1007,
1999.
Jochum Klaus Peter, Uwe Nohl, Kirstin Herwig, Esin Lammel, Brigitte Stoll and
Albrecht W. Hofmann, GeoReM: A New Geochemical Database for
Reference Materials and Isotopic Standards, Geostandards and
Geoanalytical Research, Volume 29, Issue 3, pages 333–338, 2005.
Juang, W.S., Chen, J.C., Geochemistry Of Altered Andesites From The Coastal
Range, Eastern Taiwan, Bulletin of the Central Geological Survey No. 1,
pp. 111-132, 1981.
Juang Wen-Shing, Chen Ju-Chin, Cordierite In Andesite From Lutao, Eastern
Taiwan, Bulletin of the Central Geological Survey; No.5, 67-80, 1989, in
Chinese with English abstract.
Juang, W.S., Bellon, H., The potassium–argon dating of andesites from Taiwan,
Proceedings of the Geological Society of China 27, 86–100, 1984.
Jeff D. Vervoort, P.Jonathan Patchett, Janne Blichert-Toft, Francis Albarède,
Relationships between Lu–Hf and Sm–Nd isotopic systems in the global
sedimentary system, Earth and Planetary Science Letters, Volume 168,
Issues 1–2, Pages 79-99, 1999.
Kelley Katherine A., Terry Plank, John Ludden, Hubert Staudigel, Composition
of altered oceanic crust at ODP Sites 801 and 1149, Geochemistry
Geophysics Geosystems. 4, 8910, 2003.
Kuo, T. Y., Sr-Nd-Hf-Pb isotopic constraints on the role of South China Sea
sediments in mantle wedge metasomatism beneath the North Luzon Arc,
Earth Sciences Department, Taiwan, National Cheng Kung University.
Master: 94, 2007.
Marini, J. C., Chauvel, C. and Maury, R. C., Hf isotope compositions of northern
Luzon arc lavas suggest involvement of pelagic sediments in their source,
Contributions to Mineralogy and Petrology, 149: 216-232, 2005.
Meunier Alain, Clays, Springer, 2005.
McDermott, F., Defant, M. J., Hawkesworth, C. J., Maury, R. C. and Joron, J. L.
Isotope and trace element evidence for three component mixing in the
genesis of the North Luzon arc lavas (Philippines), Contributions to
Mineralogy and Petrology, 113: 9-23, 1993.
Mouthereau F., O. Lacombe, B. Deffontaines, J. Angelier, S. Brusset,
Deformation history if the southwestern Taiwan foreland thrust belt:
insights from tectono-sedimentary analyses and balanced cross-sections,
Tectonophysics, 333, pp. 293–322, 2001.
Myron G. Best and Eric H. Christiansen, Origin of broken phenocrysts in ash-
flow tuffs, Geological Society of America Bulletin, January, v. 109, no. 1,
p. 63-73, 1997.
Neo Natsuki, Shusaku Yamazaki, Sumio Miyashita, Data report: bulk rock
compositions of samples from the IODP Expedition 309/312 sample pool,
ODP Hole 1256D1, Proceedings of the Integrated Ocean Drilling Program,
Volume 309/312, 2009.
Lai, Y.-M., Song, S.-R., Iizuka, Y., Magma mingling in the Tungho area, Coastal
Range of eastern Taiwan. Journal of Volcanology and Geothermal
Research 178,608–623, 2008.
Lai, Y.-M., Evolution of Volcanoes and Magmas in the Northern Luzon Arc,
Institute of Geology, National Taiwan University, Ph. D. Thesis, 2012, in
Chinese with English abstract.
Lai, Y.-M, Song, S.-R, The volcanoes of an oceanic arc from origin to
destruction: A case from the northern Luzon Arc, Journal of Asian Earth
Sciences ,Volume 74, Pages 97–112, 2013.
Lan, C.Y., Shen J.J. and Lee Typhoon, A Rb-Sr Isotopic Study of Andesites
from Lu-Tao, Lan-Hsu and Hsiao-Lan-Hsu, Eruption Ages and Isotopic
Heterogeneity, Bull. Inst. Earth Sci., 6, 211-226, 1986.
Larrea Patricia, Zilda França, Marceliano Lago, Elisabeth Widom, Carlos Galé,
and Teresa Ubide, Magmatic Processes and the Role of Antecrysts in the
Genesis of Corvo Island (Azores Archipelago, Portugal), J. Petrology 54
(4): 769-793, 2013.
Lee Jongman and Robert J. Stern, Glass Inclusions in Mariana Arc Phenocrysts:
A New Perspective on Magmatic Evolution in A Typical Intra-Oceanic Arc,
The Journal of Geology, volume 106, p. 19–33, 1998.
Lee Cin-Ty A., Bachmann Olivie, How important is the role of crystal
fractionation in making intermediate magmas? Insights from Zr and P
systematics, Earth and Planetary Science Letters, Volume 393, Pages
266-274, 2014.
Lin Yu-Chia, Geochemical characteristics of the calc-alkaline magmas from
Kuanyinshan in northern Taiwan: Implications on crystal fractionation and
magma origin, Department of Earth Sciences, Taiwan, National Cheng
Kung University, M.S. Thesis, 2015, in Chinese with English abstract.
Liu T-K, Hsieh S, Chen Y-G, Chen W-S, Thermo-kinematic evolution of the
Taiwan oblique-collision mountain belt as revealed by zircon fission track
dating, Earth Planet Sci. Lett. 186:45–56, 2001.
Lo H. J., Evolution of the volcanic arcs of the Coastal Range, eastern Taiwan
[J], Acta Geologica Taiwanica Science Reports of the National Taiwan
University, 27:1-18, abstract only, 1989.
Lo C.H., Onstott, T.C., Chen, C.H. and Lee, T., An assessment of
40Ar/39Ar dating for the whole-rock volcanic samples from the Luzon Arc
near Taiwan. Chem. Geol. (Isot. Geosci. Sect.) 114, 157-178, 1994.
Luhr, J.F. and Carmichael, I.S.E., The Colima volcanic complex, Mexico. I: post-
caldera andesites from Volcan Colima.Contributions to Mineralogy and
Petrology 71: 343-372, 1980.
Pal Tapan and Bhattacharya Anindya, Block-and-ash flow deposit of the
Narcondam Volcano: Product of dacite–andesite dome collapse in the
Burma–Java subduction complex, Island Arc Volume 20, Issue 4, pages
520–534, 2011.
Price R.C., C.M. Gray, R.E. Wilson, F.A. Frey, S.R. Taylor, The effects of
weathering on rare-earth element, Y and Ba abundances in Tertiary
basalts from southeastern Australia, Chemical Geology, Volume 93,
Issues 3–4, Pages 245-265, 1991.
Putirka Keith D., Michael Perfit, F.J. Ryerson, Matthew G. Jackson, Ambient
and excess mantle temperatures, olivine thermometry, and active vs.
passive upwelling, Chemical Geology, Volume 241, Issues 3–4, Pages
177-206, 2007.
Pearce J. A. and Peate, D. W., Tectonic implications of the composition of
volcanic arc magmas, Annual Review of Earth and Planetary Sciences,
23: 251-285, 1995.
Pearce J. A., P. D. Kempton, G. M. Nowell, and S. R. Noble, Hf-Nd Element
and Isotope Perspective on the Nature and Provenance of Mantle and
Subduction Components in Western Pacific Arc-Basin Systems, J.
Petrology 40 (11), 1999.
Pearce J. A., Kempton, P. D., and Gill, J. B., Hf-Nd evidence for the origin and
distribution of mantle domains in the SW Pacific, Earth and Planetary
Science Letters, 260(1-2): 98-114, 2007.
Pearce J. A., A.R. Hastie, P.T. Leat, I.W. Dalziel, L.A. Lawver, P.F. Barker, I.L.
Millar, T.L. Barry, R.E. Bevins, Composition and evolution of the Ancestral
South Sandwich Arc: Implications for the flow of deep ocean water and
mantle through the Drake Passage Gateway, Global and Planetary
Change, Volume 123, Part B, Pages 298-322, 2014.
Reubi Olivier, Blundy Jon, A dearth of intermediate melts at subduction zone
volcanoes and the petrogenesis of arc andesites, Nature 461, 1269-1273,
2009.
Rollinson, H., Using Geochemical Data: evaluation, presentation, interpretation.
Longman, London, 1993.
Savov, I.P., Hickey-Vargas, R., D’Antonio, M., Ryan, J.G., and Spadea, P.,
Petrology and geochemistry of West Philippine Basin basalts and early
Palau-Kyushu Arc volcanic clasts from ODP Leg 195, Site 1201D:
implications for the early history of the Izu-Bonin-Mariana Arc. J. Petrol.,
47(2): 277–299, 2006.
Schmid R., Descriptive nomenclature and classification of pyroclastic deposits
and fragments, Geologische Rundschau, Volume 70, Number 2, Page
794, 1981.
Scoates James s., The plagioclase–magma density paradox re-examined and
the crystallization of proterozoic anorthosites, J. Petrology, 41 (5): 627-
649, 2000.
Shao Wen-Yu, Sun-Lin Chung, and Wen-Shan Chen, Zircon U-Pb Age
Determination of Volcanic Eruptions in Lutao and Lanyu in the Northern
Luzon Magmatic Arc, Terr. Atmos. Ocean. Sci., Vol. 25, No. 2, 149-187,
2014.
Shao Wen-Yu, Zircon U-Pb and Hf isotope constraints on the petrogenesis of
igneous rocks in eastern Taiwan, Institute of Geology, National Taiwan
University, Ph. D. Thesis, 2015, in Chinese with English abstract.
Sisson T.W., Hornblende-melt trace-element partitioning measured by ion
microprobe, Chemical Geology, Volume 117, Issues 1–4, Pages 331-344,
1994.
Sparks R.S.J., S. Self, and G.P.L. Walker, Products of Ignimbrite Eruptions
Geology, v. 1, p. 115-118, 1973.
Stewart M. L., J. K. Russell, C. J. Hickson, Discrimination of hot versus cold
avalanche deposits: Implications for hazard assessment at Mount Meager,
B.C., Natural Hazards and Earth System Sciences; 3(6)713-724, 2003.
Staudigel Hubert, G.R. Davies, Stanley R. Hart, K.M. Marchant, Brian. M. Smith,
Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic
crust: DSDP/ODP sites417/418, Earth and Planetary Science Letters,
Volume 130, Issues 1–4, Pages 169-185, 1995.
Sun, S.-S., and McDonough, W.F., Chemical and isotope systematics of
oceanic basalts: implications for mantle composition and processes. In:
Magmatism in the Oceanic Basins. (eds. Saunders, A.D., Norry, M.J.),
Geological Society, London, 313–345, 1989.
Suppe J., Kinematics of arc-continent collision, flipping of subduction and back-
arc spreading neat Taiwan Mem. Geol. Soc. China, 6, pp. 21–34, 1984.
Shand S. J., Eruptive Rocks, John Wiley, New York, 1943.
Song, S.R., Lo, H.J., Lithofacies of volcanic rocks in the central Coastal
Range,eastern Taiwan: implications for island arc evolution. J. Asian Earth
Sci. 21, 23–38, 2002.
Sisson T.W., Hornblende-melt trace-element partitioning measured by ion
microprobe, Chemical Geology, Volume 117, Issues 1–4, Pages 331-344,
1994.
Tepley III Frank J., Craig C. Lundstrom, William F. McDonough, Amy Thompson,
Trace element partitioning between high-An plagioclase and basaltic to
basaltic andesite melt at 1 atmosphere pressure, Lithos, Volume 118,
Issues 1–2, Pages 82-94, 2010.
Ubide Teresa, Carlos Galé, Patricia Larrea, Enrique Arranz, Marceliano Lago,
Antecrysts and their effect on rock compositions: The Cretaceous
lamprophyre suite in the Catalonian Coastal Ranges (NE Spain), Lithos,
Volumes 206–207, Pages 214-233, 2014.
Ui T., Discrimination between debris avalanches and other volcaniclastic
deposits, abstract only, Volcanic Hazards IAVCEI Proceedings in
Volcanology Volume 1, pp 201-209, 1989.
Vervoort Jeff D., P.Jonathan Patchett, Janne Blichert-Toft, Francis Albarède,
Relationships between Lu–Hf and Sm–Nd isotopic systems in the global
sedimentary system, Earth and Planetary Science Letters, Volume 168,
Issues 1–2, Pages 79-99, 1999.
Vidal Ph., C. Dupuy, R. Maury, and M. Richard, Mantle metasomatism above
subduction zones: Trace-element and radiogenic isotope characteristics
of peridotite xenoliths from Batan Island (Philippines), Geology, v. 17, p.
1115-1118, 1989.
Willard H. Parsons, Criteria for the Recognition of Volcanic Breccias: Review,
Geological Society of America Memoirs, 115, p. 263-304, abstract only,
1969.
Wilson M. J., Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay
Minerals, Geological Society of London, 2013.
White, W.M. and Hofmann, A.W., Sr and Nd isotope geochemistry of oceanic
basalts and mantle evolution. Nature 296(5860): 821-825, 1982.
Woodhead J., S. M. Eggins, and R. W. Johnson, Magma Genesis in the New
Britain Island Arc: Further Insights into Melting and Mass Transfer
Processes, J. Petrology 39 (9), 1999.
Woodhead J., Janet Hergt, Alan Greig, Louise Edwards, Subduction zone Hf-
anomalies: Mantle messenger, melting artefact or crustal process, Earth
and Planetary Science Letters, Volume 304, Issues 1–2, Pages 231-239,
2011.
Woodhead J., Robert J. Stern, Julian Pearce, Janet Hergt, and Jeff Vervoort,
Hf-Nd isotope variation in Mariana Trough basalts: The importance of
“ambient mantle” in the interpretation of subduction zone magmas,
Geology, v. 40, p. 539-542, 2012.
Yang, T. Y., Liu, T.K. and Chen, C-H., Thermal event records of the Chimei
Igneous Complex: constraint on the ages of magma activities and the
structural implication based on fission-track dating. Acta Geol. Taiwanica,
26, 237-246, 1988.
Yang, T. F., Magma evolution of north Luzon Arc and the tectonic implication,
Institute of Geology, National Taiwan University, Ph. D. Thesis, 1992, in
Chinese with English abstract.
Yang, T. F., Tien, J.L., Chen, C-H., Lee, T. and Punongbayan, R.S., Fission-
track dating of volcanics in the northern part of the Taiwan-Luzon arc:
eruption ages and evidence for crustal contamination. J. SE Asian Earth
Sci., 11(2), 81-93, 1995.
Yang, T. F., Lee, T., Chen, C.-H., Cheng, S.-N., Knittel, U., Punongbayan, R.S.,
Easdas, A.R., A double island arc between Taiwan and Luzon:
consequence of ridge subduction. Tectonics 258, 85–101, 1996.
Yang, T. F, C-H. Chen, R.L. Tien, S.R. Song, T. K. Liu, Remnant magmatic
activity in the Coastal Range of East Taiwan after arc–continent collision:
fission-track data and 3He/4He ratio evidence, Radiation Measurements,
Volume 36, Issues 1–6, 343-349, 2003.
Zajacz Zoltán, Werner Halter, LA-ICPMS analyses of silicate melt inclusions in
co-precipitated minerals: Quantification, data analysis and mineral/melt
partitioning, Geochimica et Cosmochimica Acta, Volume 71, Issue 4,
Pages 1021-1040, 2007.

Web citation
Richard V. Fisher, 1997, http://volcanology.geol.ucsb.edu/frags.htm
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw