進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908201516163000
論文名稱(中文) 利用雙層金屬奈米柱結構製作寬頻效果的相位延遲片
論文名稱(英文) Broadband Plasmonic Wave Plate Based on Bi-layer Nanorod Array
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 黃勇儒
研究生(英文) Yong-Ru Huang
學號 L76021032
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-林俊宏
口試委員-李佳翰
口試委員-張世慧
口試委員-許家榮
中文關鍵字 相位延遲片  侷域性表面電將共振  奈米轉印  雙層結構  金奈米柱結構 
英文關鍵字 Localized surface plasmon resonance  Waveplate  Bi-layer  Nanorod  Nanotransfer imprinting 
學科別分類
中文摘要 許多光學系統,例如:橢偏儀、光測彈性和顯示器…等等,在這些光學領域和應用中,操縱光的偏振態是非常關鍵的一個程序。而調控偏振態最常見的工具為『相位延遲波板』(phase retardation waveplate) 。但由於傳統的波板體積大小屬於微米尺度的大小並不容易與奈米晶體系統結合。另外,傳統相位延遲波板的作用波段通常是較為窄頻的且具有色散性以及入射角度限制的缺點。
本文提出雙層金奈米柱結構的概念,並且藉由超穎物質材料具有的侷域表面電漿共振(localize surface plasmonics resonant)特性,使光入射至雙層結構時發生異常穿透,並產生相位延遲的現象,因此吾人將此雙層結構稱之為超穎材料式的相位延遲片。此種相位延遲片可以解決方才所提到傳統波板的缺點,甚至能達到寬域的入射角(wide field-of-view)效果。
本研究藉由嚴格耦合波分析法(rigorous coupled wave analysis)模擬分析,成功地設計由雙層金奈米柱結構所構成的四分之一相位延遲片,且其相位延遲作用頻寬高達1450奈米。實驗上採用低成本、高效率製程的奈米轉印技術即可製作出雙層金奈米結構,並且配合樣品的量測結果驗證模擬分析所得的結論。
英文摘要 Phase retardation waveplates are essential because it can control and manipulate polarization state of light. The localized surface plasmon resonances resonant has properties of non-dispersion and extraordinary of transmission/reflection, accompanied by phase abrupt jump (from in- to out-of-phase) of the transmitted in nanometer antenna array. Therefore, LSP resonant could control the electromagnetic wave intensity as well as phase shift. Above the phenomenon cause, creating x-, y-polarization had phase difference (∆) that also called phase retardation. We further discuss about uncomplicated three-dimension (bi-layer) metamaterial which applied in retardation plate and look forward to having broadband and better than two-dimension (mono-layer) retardation plate. In this study, we propose a broadband plasmonic wave plate based on bi-layer nanorod arrays on the PC substrate. The rigorous coupled wave analysis method is used to simulate the optical characterization. We can design a broadband quarter-wave plate covering a broad spectrum from 750 nm to 2300 nm. The sample was fabricated by nanotransfer imprinting lithography that fabrication process are simple and cost. Experiments were performed to demonstrate our proposed idea.
論文目次 考試合格證明 I
中文摘要 II
英文摘要 III
誌謝 IX
目錄 XI
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 論文架構 5
第二章 文獻回顧與理論介紹 6
2.1 表面電漿簡介 6
2.2 相位延遲的物理特性 8
2.3 傳統式與超穎材料式之相位延遲片 12
2.3.1傳統相位延遲片 12
2.3.2超穎材料式的相位延遲片 14
第三章 模擬研究與探討 21
3.1 單層奈米柱之點結構的模擬 21
3.1.1 單層結構設計 21
3.1.2 單層結構之固定週期,改變長度 22
3.1.3 固定長度,改變週期 24
3.2 雙層奈米柱之點結構的模擬 25
3.2.1 雙層結構設計 25
3.2.2 上層與下層固定週期,改變長度 26
3.2.3 固定週期及下層長度,改變上層長度 27
3.2.4 上層與下層相間距離與旋轉的影響 29
3.2.5 上層與下層環境介質差異的影響 30
3.2.6 上層與下層的錯位關係 31
3.3 寬頻的四分之一相位延遲片 32
3.3.1 模擬結構參數 32
3.3.2 模擬結果 32
第四章 實驗結果與討論 59
4.1 樣品製作 59
4.1.1 奈米轉印實驗機台架構 60
4.1.2 樣品製備與實驗流程 60
4.1.3 SEM 與 AFM 譜圖 67
4.2 實驗與模擬結果 68
4.2.1 實驗量測方法 68
4.2.2 實驗結果與模擬比對 68
第五章 結論與展望 85
5.1 結論 85
5.2 未來展望 86
參考文獻 87
參考文獻 1. W. Sparks, J. Hough, L. Kolokolova, T. Germer, F. Chen, S. DasSarma, P. DasSarma, F. Robb, N. Manset, and I. Reid, "Circular polarization in scattered light as a possible biomarker," Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1771-1779 (2009).
2. W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, and N. Reid, "Detection of circular polarization in light scattered from photosynthetic microbes," Proceedings of the National Academy of Sciences 106, 7816-7821 (2009).
3. D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical review letters 84, 4184 (2000).
4. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
5. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, and G.-Y. Guo, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano letters 12, 6223-6229 (2012).
6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011).
7. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Physical Review Letters 95, 095504 (2005).
8. N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
9. Y. Zhao, M. Belkin, and A. Alù, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nature communications 3, 870 (2012).
10. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering 83, 1798-1804 (2006).
11. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light: Science & Applications 2, e72 (2013).
12. Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, "Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates," Scientific reports 4 (2014).
13. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, "Broadband plasmonic half-wave plates in reflection," Optics letters 38, 513-515 (2013).
14. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano letters 12, 6328-6333 (2012).
15. T. Li, S. Wang, J. Cao, H. Liu, and S. Zhu, "Cavity-involved plasmonic metamaterial for optical polarization conversion," Applied Physics Letters 97, 261113 (2010).
16. Y. He, and G. V. Eleftheriades, "Design of thin infrared quarter-wave and half-wave plates using antenna-array sheets," Optics express 21, 24468-24474 (2013).
17. A. Pors, and S. I. Bozhevolnyi, "Efficient and broadband quarter-wave plates by gap-plasmon resonators," Optics express 21, 2942-2952 (2013).
18. J. J. Cadusch, T. D. James, and A. Roberts, "Experimental demonstration of a wave plate utilizing localized plasmonic resonances in nanoapertures," Optics express 21, 28450-28455 (2013).
19. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical review letters 99, 063908 (2007).
20. Y. Zhao, and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Physical Review B 84, 205428 (2011).
21. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, "Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles," Optics letters 36, 1626-1628 (2011).
22. A. Pors, and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Optics express 21, 27438-27451 (2013).
23. A. Roberts, and L. Lin, "Plasmonic quarter-wave plate," Optics letters 37, 1820-1822 (2012).
24. E. H. Khoo, E. P. Li, and K. B. Crozier, "Plasmonic wave plate based on subwavelength nanoslits," Optics letters 36, 2498-2500 (2011).
25. Z. Chen, C. Wang, Y. Lou, B. Cao, and X. Li, "Quarter-wave plate with subwavelength rectangular annular arrays," Optics Communications 297, 198-203 (2013).
26. Z. Chen, C. Wang, F. Xu, Y. Lou, B. Cao, and X. Li, "Reflective plasmonic waveplates based on metal–insulator–metal subwavelength rectangular annular arrays," Photonics and Nanostructures-Fundamentals and Applications 12, 189-198 (2014).
27. Y. Zhao, and A. Alù, "Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates," Nano letters 13, 1086-1091 (2013).
28. A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Physical review letters 97, 177401 (2006).
29. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Physical review letters 102, 023901 (2009).
30. S. A. Maier, "Localized surface plasmons," Plasmonics: fundamentals and applications, 65-88 (2007).
31. W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale 5, 9950-9956 (2013).
32. T. Ellenbogen, K. Seo, and K. B. Crozier, "Chromatic plasmonic polarizers for active visible color filtering and polarimetry," Nano letters 12, 1026-1031 (2012).
33. F. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, "Enhanced-transmission metamaterials as anisotropic plates," Physical Review B 84, 035107 (2011).
34. J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, "Nanoparticle spectroscopy: Birefringence in two-dimensional arrays of L-shaped silver nanoparticles," The Journal of Physical Chemistry C 112, 3252-3260 (2008).
35. M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, "Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy," Proceedings of the National Academy of Sciences 109, 12364-12368 (2012).
36. R. Gordon, A. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Physical review letters 92, 037401 (2004).
37. A. T. KG, S. Piramanayagam, M. Ranjbar, R. Sbiaa, and T. Chong, "Path to achieve sub-10-nm half-pitch using electron beam lithography," Journal of Vacuum Science & Technology B 29, 011035 (2011).
38. J.-W. Kim, K.-Y. Yang, S.-H. Hong, and H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Applied Surface Science 254, 5607-5611 (2008).
39. Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, "Interfacial chemistries for nanoscale transfer printing," Journal of the American Chemical Society 124, 7654-7655 (2002).
40. K. Lee, S.-H. Oh, N.-G. Kang, J.-S. Lee, D.-Y. Kim, H. Lee, and G. Y. Jung, "Nonaqueous nanoscale metal transfer by controlling the stickiness of organic film," Langmuir 24, 8413-8416 (2008).
41. E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, "A technique to transfer metallic nanoscale patterns to small and non-planar surfaces," ACS nano 3, 59-65 (2008).
42. D. Li, and L. J. Guo, "Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping," Journal of Physics D: Applied Physics 41, 105115 (2008).
43. Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Letters 3, 913-917 (2003).
44. M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photonics 1, 119-122 (2007).
45. R. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review 106, 874 (1957).
46. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
47. H. Bethe, "Theory of diffraction by small holes," Physical Review 66, 163 (1944).
48. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements," Nano letters 12, 1655-1659 (2012).
49. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, "Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing," Nano letters 10, 1936-1940 (2010).
50. S. Ishii, V. M. Shalaev, and A. V. Kildishev, "Holey-metal lenses: sieving single modes with proper phases," Nano letters 13, 159-163 (2012).
51. E. Hecht, "Optics (4th Edition)," Addison-Wesley, Reading, Mass., CH8 (2002).
52. R. Taubert, R. Ameling, T. Weiss, A. Christ, and H. Giessen, "From near-field to far-field coupling in the third dimension: retarded interaction of particle plasmons," Nano letters 11, 4421-4424 (2011).
53. Y.-L. Loo, J. W. Hsu, R. L. Willett, K. W. Baldwin, K. W. West, and J. A. Rogers, "High-resolution transfer printing on GaAs surfaces using alkane dithiol monolayers," Journal of Vacuum Science & Technology B 20, 2853-2856 (2002).
54. S. Kulinich, and M. Farzaneh, "Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers," surface science 573, 379-390 (2004).
55. V. DePalma, and N. Tillman, "Friction and wear of self-assembled trichlorosilane monolayer films on silicon," Langmuir 5, 868-872 (1989).
56. V. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth silver thin films deposited with a germanium nucleation layer," Nano letters 9, 178-182 (2008).
57. C. C. Liang, C. H. Lin, T. C. Cheng, J. Shieh, and H. H. Lin, "Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces," Advanced Materials Interfaces 2 (2015).
58. "SU-8: Thick Photo-Resist for MEMS, http://memscyclopedia.org/su8.html.."
59. l. Gelest "TRIDECAFLUORO-1,1,2,2 TETRAHYDROOCTYL)TRICHLOROSILANE http://shop.gelest.com/Product.aspx?catnum=SIT8174.0."
60. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, "3D Micro‐and Nanostructures via Interference Lithography," Advanced Functional Materials 17, 3027-3041 (2007).
61. A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, "Poly (glycidyl methacrylate) s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography," Journal of Materials Chemistry 18, 3316-3318 (2008).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw