進階搜尋


下載電子全文  
系統識別號 U0026-1908201422235500
論文名稱(中文) 具自動偵測電流範圍能力之電化學生醫感測器設計
論文名稱(英文) Design of an Electrochemical Sensor with Automatic Current Range Detection for Biomedical Applications
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 余明翰
研究生(英文) Ming-Han Yu
學號 N26014778
學位類別 碩士
語文別 英文
論文頁數 69頁
口試委員 指導教授-劉濱達
口試委員-邱瀝毅
口試委員-丁信文
口試委員-陳春僥
口試委員-唐經洲
中文關鍵字 電化學感測器  電流範圍偵測器  電流時間轉換器 
英文關鍵字 Electrochemical sensor  current range detection circuit  current-to-time converter 
學科別分類
中文摘要 本論文提出一個可結合並應用於生醫領域的電化學感測器。此電路前端由一個電流鏡與可自動偵測電流範圍之電路組成,用以提升可量測之電流範圍。此電路可以整合於外部的生醫感測系統且符合其要求的規格。此架構的電流量測原理為定電壓量電流法,採用電流傳輸器使感測端的電壓穩定,接著以電流時間轉換器將電流轉換為時間訊號,再以時間數位轉換器輸出十位元的數位碼。透過此機制,將電流值轉換為可顯示之數位訊號。整體設計著重於降低電路複雜度,有效減小佈局面積,使生醫感測系統微小化。
本電路以TSMC 0.18-μm 1P6M CMOS製程來模擬設計,供應電壓為1.8 V,以100 MHz之時脈訊號驅動。量測結果顯示功率消耗為1.41 mW。此外,可感測之電流範圍亦達到20 ~ 1200 µA,且具良好線性度,R平方之平均值為0.9986。
英文摘要 This thesis presents a mechanism of current sensing for biomedical applications. This work can be integrated with external biomedical system, and to meet the requirement of the specification, by using a current mirror with an automatic current range detection circuit to increase the current sensing range. A method of constant voltage current measurement is utilized, and applies a current conveyor to maintain the voltage at sensor terminal. Follow by a current-to-timer converter to process the current output from current mirror, and transfer the sensor current into time signal. Then apply a time-to-digital converter to obtain 10-bit digital code. Therefore, Current signal can be displayed in digital mode. The overall design focuses on reducing circuit complexity, effectively lessens layout area, miniaturization of the whole biosensor system can be realized. The proposed circuit is implemented in TSMC 0.18-μm 1P6M CMOS technology. The driven clock signal of circuit is 100 MHz with a supply voltage of 1.8 V. The power dissipation is approximate to 1.41 mW. The measured current range achieves from 20 µA to 1200 µA and has good linearity with average R-squared value of 0.9986.
論文目次 Abstract (Chinese) i
Abstract (English) iii
Acknowledgement v
Table of Contents vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 4
Chapter 2 Overview of Potentiostat Architecture 5
2.1 Fundamental Concepts of Potentiostat 5
2.2 Fundamental Concepts of Voltammetry 8
2.2.1 Linear scan voltammetry 8
2.2.2 Cyclic voltammetry 9
2.2.3 Differential pulse voltammetry 10
2.2.4 Square wave voltammetry 11
2.3 Relative Potentiostat Research 12
2.3.1 Potentiostat structure based on operational amplifiers 14
2.3.2 A Time-Based Potentiostat Structure 15
2.3.3 A Current-Mirror-Based Potentiostat Structure 17
Chapter 3 Circuit Implementation 19
3.1 The Architecture of the Proposed Circuit 19
3.2 Current Conveyor 22
3.2.1 Two stage operational amplifier 22
3.3 Current Mirror 24
3.4 Current Range Detection Circuit 27
3.4.1 Continuous time comparator 28
3.5 Current-to-Time Converter 29
3.5.1 Latched comparator 30
3.6 Time-to-Digital Converter 31
3.6.1 D flip-flop 33
Chapter 4 Experimental Results and Discussion 35
4.1 Layout and Simulation Results 35
4.1.1 Layout consideration 36
4.1.2 Layout of this chip 37
4.1.3 Simulation results 38
4.2 Measurement Results 47
4.2.1 Measurement environment 47
4.2.2 Measurement results and discussion 50
4.2.3 Comparison and discussion 58
Chapter 5 Conclusions and Future Work 61
5.1 Conclusions 61
5.2 Future Work 62
References 63
參考文獻 [1] P. W. Cheung, D. G. Fleming, W. H. Ko, and M. R. Neuman, Eds., Theory, Design, and Biomedical Applications of Solid State Chemical Sensors., West Palm Beach, FL: CRC Press, 1978, pp. 190–205.
[2] J. S. Soeldner, “Symposium on potentially implantable glucose sensors,” Diabetes Care, vol. 5, no. 3, May–June 1982, pp. 147–183.
[3] L. Clark Jr. and C. Lyons, Ann. NY Acad. Sci., vol. 120, Oct. 1962, pp. 29–45.
[4] P. Bergveld, “Development of an ion-sensitive solid-state for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. 17, pp. 70–71, Jan. 1970.
[5] G. G. Guibault, “Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector,” Anal. Chem., vol. 55, pp. 1682–1684, Sep. 1983.
[6] P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard, “Active CMOS sensor array for electrochemical biomolecular detection,” IEEE J. Solid-State Circuits, vol. 43, pp. 1859–1871, July 2008.
[7] A. Wisitsoraat, C. Karuwan, A. Sapphat, K. Jaruwongrungsee, and A. Tuantranont, “Development of electrochemical sensing system with carbon nanotube based electrode,” in Proc. of the Int. Conf. on Electr./Electron., Comput. Telecomm. Inform. Tech., vol. 2, pp. 865–868, May 2008.
[8] G. Massicotte, M. Sawan, G. De Micheli, and S. Carrara, “Multi-electrode amperometric biosensor for neurotransmitters detection,” IEEE Trans. Biomed. Circuits Syst., pp. 162–165, Nov. 2013.
[9] A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications. New York: Wiley, 2001, pp. 156–304.
[10] University of California, Davis, “ChemWiKi,” [Online]. Available: http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/Nernst_Equation
[11] R. F. B. Turner, D. J. Harrison, and H. P. Baltes, “A CMOS potentiostat for amperometric chemical sensors,” IEEE J. Solid-State Circuits, vol. 22, pp. 473–478, June 1987.
[12] J. C. Fidler, W. R. Penrose, and J. P. Bodis, “A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors,” IEEE Trans. Instrum. Meas., vol. 41, pp. 308–311, Apr. 1992.
[13] R. J. Reay, S. P. Kounaves, and G. T. A. Kovacs, “An integrated COMS potentiostat for miniaturized electroanalytical instrumentation,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1994, pp. 162–163.
[14] R. G. Kakerow, H. Kappert, E. Spiegel, and Y. Manoli, “Low-power single-chip CMOS potentiostat,” in Proc. IEEE Int. Conf. Solid-State Sensors and Actuators, June 1995, pp. 142–145.
[15] M. Breten, T. Lehmann, and E. Braun, “Integrating data converters for picoampere currents from electrochemical transducers,” in Proc. IEEE Int. Symp. Circuits Syst., May 2000, pp. 709–712.
[16] A. Bandyopadhyay, G. Mulliken, G. Cauwenberghs, and N. V. Thakor, “VLSI potentiostat array for distributed electrochemical neural recording,” in Proc. IEEE Int. Symp. Circuits Syst., May 2002, pp. 740–743.
[17] A. Frey, M. Jenkner, M. Schienle, C. Paulus, B. Holzapfl, P. Schindler-Bauer, F. Hofmann, D. Kuhlmeier, J. Krause, J. Albers, W. Gumbrecht, D. Schmitt-Landsiedel, and R. Thewes, “Design of an integrated potentiostat circuit for CMOS bio sensor chip,” in Proc. IEEE Int. Symp. Circuits Syst., May 2003, pp. 9–12.
[18] S. M. Martin, F. H. Gebara, T. D. Strong, and R. B. Brown, “A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat,” in Proc. IEEE Int. Symp. Circuits Syst., May 2004, pp. 892–895.
[19] W. Y. Liao, Y. G. Lee, C. Y. Huang, H. Y. Lin, Y. C. Weng, and T. C. Chou, “Telemetric electrochemical sensor,” Biosens. Bioelectron., vol. 20, pp. 482–490, Oct. 2004.
[20] M. Stanacevic, K. Murari, G. Cauwenberghs, and N. V. Thakor, “16-channel wide-range VLSI potentiostat array,” IEEE Trans. Biomed. Circuits Syst., Dec. 2004, pp. S1/7/INV/17–S1/7/INV/20.
[21] K. Murari, M. Stanacevic, G. Cauwenberghs, and N. V. Thakor, “Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing,” in Proc. IEEE Int. Eng. Med. Biol. Soc., Dec. 2004, pp. 4063–4066.
[22] A. Hassibi and T. H. Lee, “A programmable electrochemical biosensor array in 0.18μm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, vol. 1, pp. 564–565 & 617.
[23] H. S. Narula and J. G. Harris, “A time-based VLSI potentiostat for ion current measurements,” IEEE Sensors J., vol. 6, pp. 239–247, Apr. 2006.
[24] M. M. Ahmadi and G. A. Jullien, “Current-mirror based potentiostats for three-electrode amperometric electrochemical sensors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, pp. 1339–1348, July 2009.
[25] Y. F. Liang, C. Y. Huang, and B. D. Liu, “A voltammetry potentiostat design for large dynamic range current measurement,” in Proc. Intell. Comput. Biomed. Instrum., Dec. 2011, pp. 260–263.
[26] W. M. Chen, L. T. Kuo, and C. Y. Wu, “A Low-power current-mode front-end acquisition system for biopotential signal recording,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 842–845.
[27] M. H. Nazari, M. J. Hamed, L. Leng, A. Guenther, and R. Genov, “CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors,” IEEE Tran. Biomed. Circuits Syst., vol. 7, no. 3, June 2013.
[28] R. Greef, “Instruments for use in electrode process research,” J. Phys. E, Sci. Instrum., vol. 11, pp. 1–12, Jan. 1978.
[29] R. Genov, M. Stanceacevic, M. Naware, G. Cauwenberghs, and N. V. Thakor, “16-channel integrated potentiostat for distributed neurochemical sensing,” IEEE Tran. Circuits Syst. I, Reg. Papers, vol. 53, no. 11, pp. 2371–2376, Nov. 2006.
[30] S. Ayers, K. D. Gillis, M. Lindau, and B. A. Minch, “Design of a CMOS potentiostat circuit for electrochemical detector arrays,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 4, pp. 736–744, Apr. 2007.
[31] H. C. Yang and D. J. Allstot, “Modified modeling of miller compensation for two-stage operational amplifiers,” in Proc. IEEE Int. Symp. Circuits Syst., Jun. 1991, pp. 2557–2660.
[32] E. Sackinger and W. Guggenbuhl, “A high-swing, high-impedance MOS cascode circuit,” IEEE J. Solid-State Circuits, vol. 25, pp. 289–298, Feb. 1990.
[33] B. Razavi and B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE J. Solid-State Circuits, vol. 27, pp. 1916–1926, Dec. 1992.
[34] C. H. Ng, C. S. Ho, S. Fu, S. F. Chu, and S. C. Sun, “MIM capacitor integration for mixed-signal/RF application,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1309–1409, July 2005.
[35] Alldatasheet.com, Electronic Components Datasheet Search. [Online]. Available: http://www.alldatasheet.com/view.jsp?Searchword=LM317
[36] M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, and N. V. Thakor, “VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing,” IEEE Trans. Biomed. Circuits Syst., vol. 1, pp. 63–72, Mar. 2007.
[37] C. Y. Huang, “Design of a voltammetry potentiostat for biochemical sensors,” Analog Integr. Circ. Sig. Process, vol. 67, pp. 375–381, June 2011.
[38] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001, pp. 100–360.
[39] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997, pp. 82–329.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw