進階搜尋


下載電子全文  
系統識別號 U0026-1908201420535300
論文名稱(中文) 應用超音波評估正常及扳機指之屈指肌腱滑移模式
論文名稱(英文) Investigation of the Flexor Tendon Gliding Pattern in Normal and Trigger Digits Using Ultrasound Imaging
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 劉書奇
研究生(英文) Shu-Chi Liu
學號 p86001053
學位類別 碩士
語文別 英文
論文頁數 79頁
口試委員 指導教授-蘇芳慶
口試委員-郭立杰
口試委員-周一鳴
口試委員-孫永年
口試委員-邱浩遠
中文關鍵字 屈指深肌  屈指淺肌  超音波  肌腱滑移  扳機指 
英文關鍵字 flexor digitorum superficialis  flexor digitorum profundus  ultrasound  tendon excursion  trigger finger 
學科別分類
中文摘要 手指屈指肌腱滑動在手指復健動作當中主要是為了避免受傷的組織在修復的過程中產生沾黏現象,過去對於屈指肌腱滑移量的探討多是以屍體及靜態量測居多,至今仍鮮少有針對體內及時量測的研究發表,而目前對於肌腱的最大滑動度及各種手指主動運動對肌腱滑動的影響在各研究中也有所異同。此外也有許多手部肌腱相關的疾病與肌腱滑動有密切的關係,其中,在臨床上扳機指(trigger finger)或稱為狹窄性腱鞘炎為一個經常發生在手部的疾病,扳機指病患在活動手指時會有不適甚至疼痛的情形發生,這樣的情況是由於肌腱與腱鞘之間尺寸上的差異造成肌腱滑動的不順暢。”Triggering”是表示手指在屈曲或伸展時肌腱通過患處卡住後瞬間釋放的現象。一般說法認為是肌腱發炎腫脹產生的結節造成肌腱與腱鞘之間的擠壓,使得在相對的組織變形時發生Triggering的現象。相對於不同的動作應當會產生的不同滑肌腱移模式,使得動作過程中有避開Triggering狀況的可能,而這樣的可能性是值得關注的。因此本研究目的欲透過超音波影像技術、運動學及動力學分析,定義在不同主動手指運動之下屈指肌腱的滑動模式,以及運用此技術分析扳機指病患肌腱運動的表現。
本研究以19位手部健康之受測者及9位扳機指病患為研究對象,健康受測者當中會對於慣用手進行測試,病人部分則以患指為主。本研究分別對於兩種手指主動運動做分析與比較,其一是主動握拳再伸直,另一個動作則是類似肌腱滑移練習的一個修改肌腱滑移練習,此動作是請受測者主動彎曲各個指關節,初始將手指維持伸直,接著依序彎曲MCP、PIP、DIP關節於最大角度,接著伸展MCP及同時伸展PIP和DIP回到初始姿勢完成一個循環。而病患除了上述動作外,為了觀察在Triggering瞬間各關節角度與滑移量的關係,另外有一項被動拉伸試驗,會請受測者握緊手再放鬆後以馬達帶動拉線,將患部手指被動拉直。在以上提到的三種試驗動作過程中皆同步紀錄動作資訊及手腕處肌腱滑動的超音波影像,並且於被動拉伸試驗當中同時有紀錄被動拉伸過程中拉動手指所施加的力量。 肌腱滑移量、滑移量與總關節角度變化量對於手掌長度標準化的比值、屈指淺肌與屈指深肌滑移量之比值等參數將用於評估在各個動作階段中,肌腱與關節,及兩條屈指肌腱之間的關係。
從結果上來看,以不同方式從手指伸直握拳到最大角度並沒有差異,在一般握拳的過程中(屈指淺肌/屈指深肌)滑移比值顯示在手指彎曲度較大時比值較小,表示屈指深肌隨著手指彎曲貢獻度有增加的趨勢。修改肌腱滑移練習相較於一般握拳,在第一階段單純只彎曲MCP關節而保持其他關節伸直時,顯示屈指淺肌對於屈指深肌會有較大的滑移量產生,而運用肌腱滑移與關節角度標準化的比值在屈曲各個階段之間分別有不同比值的差異,因此可以用做手指動作特性的參考資訊。扳機指病患藉由超音波影像技術得到的肌腱滑動模式在被動拉伸試驗中,與外在拉力的表現做分析與比較,再藉由觀察手指關節角度的變化,這是一個具有潛力方法使的各別肌腱的發炎狀況藉由體內檢測技術來做評估,同時藉由超音波影像所得到的個別屈指肌腱的活動變化,評估不同動作中肌腱運動的表現與症狀之間的關係。
本研究運用超音波影像技術探究了手部健康之受測者及扳機指病患在進行不同主動手指運動時肌腱滑移與關節角度之間的關係,並且藉由手指拉伸測試評估扳機指手部症狀的表現。同時,建立主動運動中肌腱滑移量及滑移模式日後可以用於復健評估、手部肌腱滑移研究的參照,而此模型做進一步的改進可以做為扳機指病患評估扳機現象時安全且直接方法。
英文摘要 The role of finger tendon excursion during rehabilitation protocol is to avoid the adhesion phenomenon which occurs at tissue or tendon repair. In previous studies, the main focus of these investigations were cadaveric or static study, there were few studies measuring tendon excursion in-vivo that have been made in intraoperative observations, electromyography, or ultrasound. Currently, the maximum tendon excursion and the tendon excursion pattern on active finger motion were varied in different study that did not have a main reference. There is a common disease seen in hand clinics called trigger finger, or stenosing tenosynovitis. Patients who suffer from trigger finger present discomfort during finger movement. The discomfort is caused by the size discrepancy between flexor tendons and annular pulley system, which results in greater resistance. “Triggering”, the sudden release phenomenon during finger extension movement, when the tendon passes through the affected region. The tendon nodule is a swelling of the flexor tendon resulting in constriction of the flexor tendon sheath, triggering occurs when deformation of the tendon is induced. Due to different motions, different tendon gliding patterns maybe improve the triggering. We are interested in understanding this possibility. The purpose of this study is to use ultrasonography, kinematic, and kinetic analysis to obtain the tendon gliding pattern during different active finger motion, and use this technique to evaluate the triggering condition of trigger finger patients.
In the study, we recruited 19 healthy subjects who did not have any hand disease or injury, and 7 trigger finger patients. The finger motions we used are active fist motion and a modified tendon gliding exercise. First, participants were asked to flex and extend their finger in the neutral speed; another motion was a specific finger motion similar with tendon gliding exercise. In the initial stage, participants were ask to extend all finger joints, and then sequentially flex MP, PIP, DIP joints to their maximum angles. Next, participants will extend MP, PIP, DIP joints to the initial position. In the case of patients, in addition to the above motion, the passive pulling test was done in order to observe the relationship between tendon gliding and joint angle at triggering moment. In this test we will use a string to pull the affected finger passively from a flexed posture to an extended posture. The motion data and ultrasound image will be collected simultaneously. The force data was collected in the passive pulling test. The tendon excursion, normalized tendon excursion versus differential joint angle, FDS/FDP excursion ratio were used to evaluate the relationship between tendon and joint angle, and between each flexor tendons.
As a result, the characteristic are similar at the maximum joint angle between each active finger motion. For active fist motion, FDS/FDP excursion ratio show decrease with larger finger flexion angle, which means FDP tendon play a more important role at larger flexion angles. For the modified tendon gliding exercise, the result shows FDS tendon made larger excursion at phase 1 with respect to FDP tendon. The adjusted excursion ratio shows different patterns at all assigned phases between active fist motion and modified tendon gliding exercise. This characteristic may be reference data for the future work. In the patient study, using ultrasound and external force to find that the relationship between performance of external force and tendon movement on image. This is a potential method to evaluate the tendon performance of trigger finger at triggering moment.
In the current study we used ultrasonography to evaluate the relationship between tendon gliding and joint angle on healthy subjects and trigger finger patients, and used passive pulling tests to estimate condition of triggering. Further, the tendon excursion pattern was building to become a reference to help evaluation of rehabilitation and hand research. This model might be a safe and direct method to evaluate the finger movement pattern of trigger finger in the future.
論文目次 中文摘要 II
Abstract IV
致謝 VII
Contents VIII
List of Figures XI
List of Tables XV
Chapter 1 Introduction 1
1.1 Rehabilitation 1
1.2 Anatomy of Human Digits 2
1.3 Tendon Excursion of Hand Motion 4
1.4 Medical Imaging Technology 6
1.5 The Ultrasound Musculoskeletal Application on Hand 7
1.6 Trigger Digits 9
1.7 Treatment and Evaluation of Trigger Digits 10
1.8 Kinematics and Kinetics of Trigger Digits 13
1.9 Motivation 14
1.10 Purpose 15
1.11 Hypothesis 16
Chapter 2 Materials and Methods 17
2.1 Subject 17
2.2 Experimental Instrument 19
2.3 Experimental Procedure 22
2.3.1 Image Acquisition Procedure 22
2.3.2 Passive Pulling Test 23
2.3.3 Active Fist Motion 23
2.3.4 Modified Tendon Gliding Exercise 24
2.4 Data Analysis 26
2.4.1 Definition of Phases 26
2.4.2 Joint Angle 27
2.4.3 Tendon Excursion 28
2.4.4 Adjusted Excursion Ratio and FDS/FDP Excursion Ratio 32
2.4.5 Difference at Maximum Joint Angle of Trigger Digit 34
2.4.6 Pulling Test of Trigger Digit 34
2.4.7 Statistical Analysis 35
Chapter 3 Results 36
3.1 Difference at Maximum Joint Angle 36
3.1.1 Tendon Excursion 36
3.1.2 Adjusted excursion ratio and FDS/FDP Excursion Ratio 38
3.2 Assigned phase of Modified tendon gliding exercise 39
3.2.1 Tendon Excursion 39
3.2.2 Adjusted excursion ratio and FDS/FDP Excursion Ratio 45
3.3 Trigger Digit Patient 50
3.3.1 Difference at Maximum Joint Angle of Patients 50
3.3.2 Passive Pulling Test 51
Chapter 4 Discussion 58
4.1 Tendon Excursion of Hand Motion 58
4.2 Difference at Maximum Joint Angle 62
4.3 Assigned Phase of Modified Tendon Gliding Exercise 63
4.3.1 Tendon Excursion 63
4.3.2 Adjusted Excursion Ratio and FDS/FDP Excursion Ratio 65
4.4 Trigger Digit Patient 67
4.4.1 Difference at Maximum Joint Angle of Patients 67
4.4.2 Passive Pulling Test 67
4.4.3 Joint Angle Pattern of All Test at Trigger Point 68
4.5 Limitations 73
Chapter 5 Conclusion 74
Reference 76
參考文獻 1. Strickland, J.W., The scientific basis for advances in flexor tendon surgery. Journal of Hand Therapy, 2005. 18(2): p. 94-110.
2. Korstanje, J.W., et al., Ultrasonographic assessment of long finger tendon excursion in zone v during passive and active tendon gliding exercises. J Hand Surg Am, 2010. 35(4): p. 559-65.
3. Talsma, E., et al., The effect of mobilization on repaired extensor tendon injuries of the hand: a systematic review. Arch Phys Med Rehabil, 2008. 89(12): p. 2366-72.
4. Rosenthal, E.A. and C.W. Stoddard, Questions hand therapists ask about treatment of tendon injuries. Journal of Hand Therapy, 2005. 18(2): p. 313-318.
5. Duran, R. and R. Houser. Controlled passive motion following flexor tendon repair in zones 2 and 3. in AAOS symposium on tendon surgery in the hand. 1975.
6. Trumble, T.E., et al., Zone-II flexor tendon repair: a randomized prospective trial of active place-and-hold therapy compared with passive motion therapy. The Journal of Bone & Joint Surgery, 2010. 92(6): p. 1381-1389.
7. Lilly, S.I. and T.M. Messer, Complications after treatment of flexor tendon injuries. Journal of the American Academy of Orthopaedic Surgeons, 2006. 14(7): p. 387-396.
8. McGrouther, D. and M. Ahmed, Flexor tendon excursions in “no-man's land”. The Hand, 1981. 13(2): p. 129-141.
9. Horibe, S., et al., Excursion of the flexor digitorum profundus tendon: a kinematic study of the human and canine digits. Journal of Orthopaedic Research, 1990. 8(2): p. 167-174.
10. Tanaka, T., et al., Flexor digitorum profundus tendon tension during finger manipulation: A study in human cadaver hands. Journal of Hand Therapy, 2005. 18(3): p. 330-338.
11. Panchal, J., et al., The range of excursion of flexor tendons in Zone V: a comparison of active vs passive flexion mobilisation regimes. British journal of plastic surgery, 1997. 50(7): p. 517-522.
12. Wehbé, M.A. and J.M. Hunter, Flexor tendon gliding in the hand. Part I. In vivo excursions. The Journal of hand surgery, 1985. 10(4): p. 570-574.
13. Wehbé, M.A. and J.M. Hunter, Flexor tendon gliding in the hand. Part II. Differential gliding. The Journal of hand surgery, 1985. 10(4): p. 575-579.
14. Wehbé, M.A., Tendon gliding exercises. The American journal of occupational therapy: official publication of the American Occupational Therapy Association, 1987. 41(3): p. 164-167.
15. Yoshii, Y., et al., Ultrasound assessment of the motion patterns of human flexor digitorum superficialis and profundus tendons with speckle tracking. J Orthop Res, 2011. 29(10): p. 1465-9.
16. Soeters, J.N., et al., Reliability of tendon excursion measurements in patients using a color Doppler imaging system. The Journal of hand surgery, 2004. 29(4): p. 581-586.
17. Yoshii, Y., et al., Speckle tracking ultrasound for assessment of the relative motion of flexor tendon and subsynovial connective tissue in the human carpal tunnel. Ultrasound Med Biol, 2009. 35(12): p. 1973-81.
18. Van Holsbeeck, M.T. and J.H. Introcaso, Musculoskeletal ultrasound. 2001: Mosby St Louis.
19. Yoshii, Y., et al., Ultrasound assessment of the displacement and deformation of the median nerve in the human carpal tunnel with active finger motion. J Bone Joint Surg Am, 2009. 91(12): p. 2922-30.
20. van Doesburg, M.H., et al., Median nerve deformation and displacement in the carpal tunnel during index finger and thumb motion. J Orthop Res, 2010. 28(10): p. 1387-90.
21. van Doesburg, M.H., et al., Median nerve deformation in differential finger motions: ultrasonographic comparison of carpal tunnel syndrome patients and healthy controls. J Orthop Res, 2012. 30(4): p. 643-8.
22. Korstanje, J.-W.H., et al., Ultrasonographic assessment of flexor tendon mobilization: effect of different protocols on tendon excursion. The Journal of Bone & Joint Surgery, 2012. 94(5): p. 394-402.
23. Snijders, J.W., et al., Estimation of in-vivo muscle moment arms around the MCP joint using ultrasound. 2011.
24. An, K., et al., Tendon excursion and moment arm of index finger muscles. Journal of Biomechanics, 1983. 16(6): p. 419-425.
25. Brand, P.W. and A. Hollister, Clinical mechanics of the hand. 1993: Mosby Year Book.
26. Buford Jr, W.L., et al., Analysis of intrinsic–extrinsic muscle function through interactive 3-dimensional kinematic simulation and cadaver studies. The Journal of hand surgery, 2005. 30(6): p. 1267-1275.
27. Akhtar, S., et al., Management and referral for trigger finger/thumb. Bmj, 2005. 331(7507): p. 30-33.
28. Saldana, M.J., Trigger digits: diagnosis and treatment. J Am Acad Orthop Surg, 2001. 9(4): p. 246-52.
29. Ryzewicz, M. and J.M. Wolf, Trigger digits: principles, management, and complications. The Journal of hand surgery, 2006. 31(1): p. 135-146.
30. Hueston, J. and W. Wilson, The aetiology of trigger finger: Explained on the basis of intratendinous architecture. The Hand, 1972. 4(3): p. 257-260.
31. Froimson, A., Tenosynovitis and tennis elbow. Operative hand surgery, 1993. 2: p. 1989-2006.
32. Freiberg, A., R. Mulholland, and R. Levine, Nonoperative treatment of trigger fingers and thumbs. The Journal of hand surgery, 1989. 14(3): p. 553-558.
33. Lee, D.-H., et al., Sonographically Guided Tendon Sheath Injections Are More Accurate Than Blind Injections Implications for Trigger Finger Treatment. Journal of Ultrasound in Medicine, 2011. 30(2): p. 197-203.
34. Turowski, G.A., P.D. Zdankiewicz, and J.G. Thomson, The results of surgical treatment of trigger finger. The Journal of hand surgery, 1997. 22(1): p. 145-149.
35. Le Viet, D., et al., Trigger finger treatment by ulnar superficialis slip resection (USSR). Journal of Hand Surgery (British and European Volume), 2004. 29(4): p. 368-373.
36. Seradge, H. and H.E. Kleinert, Reduction flexor tenoplasty: Treatment of stenosing flexor tenosynovitis distal to the first pulley. The Journal of Hand Surgery, 1981. 6(6): p. 543-544.
37. Kuo, L.C., et al., Kinematical and functional improvements of trigger digits after sonographically assisted percutaneous release of the A1 pulley. J Orthop Res, 2009. 27(7): p. 891-6.
38. Tung, W.L., et al., Quantitative evidence of kinematics and functional differences in different graded trigger fingers. Clin Biomech (Bristol, Avon), 2010. 25(6): p. 535-40.
39. Lu, S.C., et al., Quantifying catch-and-release: the extensor tendon force needed to overcome the catching flexors in trigger fingers. J Orthop Res, 2013. 31(7): p. 1130-5.
40. CHIU, H.-Y., et al., The use of the motion analysis system for evaluation of loss of movement in the finger. Journal of Hand Surgery (British and European Volume), 2000. 25(2): p. 195-199.
41. Chiu, H.-Y., et al., The motion analysis system and goniometry of the finger joints. The Journal of Hand Surgery: British & European Volume, 1998. 23(6): p. 788-791.
42. Su, F.C., et al., Movement of finger joints induced by synergistic wrist motion. Clin Biomech (Bristol, Avon), 2005. 20(5): p. 491-7.
43. Ugbolue, U.C., et al., Tendon and nerve displacement at the wrist during finger movements. Clinical Biomechanics, 2005. 20(1): p. 50-56.
44. Yamaguchi, T., et al., Relative longitudinal motion of the finger flexors, subsynovial connective tissue, and median nerve before and after carpal tunnel release in a human cadaver model. The Journal of hand surgery, 2008. 33(6): p. 888-892.
45. Silfverskiöl, K., E. May, and A. Törnvall, Flexor digitorum profundus tendon excursions during controlled motion after flexor tendon repair in zone II: a prospective clinical study. The Journal of hand surgery, 1992. 17(1): p. 122-131.
46. Yoshii, Y., et al., Effects of carpal tunnel release on the relative motion of tendon, nerve, and subsynovial connective tissue in a human cadaver model. Clinical Biomechanics, 2008. 23(9): p. 1121-1127.
47. Yoshii, Y., et al., The effect of wrist position on the relative motion of tendon, nerve, and subsynovial connective tissue within the carpal tunnel in a human cadaver model. Journal of Orthopaedic Research, 2008. 26(8): p. 1153-1158.
48. Yoshii, Y., et al., Velocity‐dependent changes in the relative motion of the subsynovial connective tissue in the human carpal tunnel. Journal of Orthopaedic Research, 2011. 29(1): p. 62-66.
49. Soeters, J.N., et al., Non-invasive measurement of tendon excursion with a colour Doppler imaging system: a reliability study in healthy subjects. Scandinavian journal of plastic and reconstructive surgery and hand surgery, 2004. 38(6): p. 356-360.
50. van Doesburg, M.H., et al., Speckle-tracking sonographic assessment of longitudinal motion of the flexor tendon and subsynovial tissue in carpal tunnel syndrome. Journal of Ultrasound in Medicine, 2012. 31(7): p. 1091-1098.
51. Korstanje, J.-W.H., et al., Development and validation of ultrasound speckle tracking to quantify tendon displacement. Journal of biomechanics, 2010. 43(7): p. 1373-1379.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw