進階搜尋


下載電子全文  
系統識別號 U0026-1908201416255900
論文名稱(中文) 抑制型、阻絕型與犧牲型塗層系統於含氯環境中之電化學交流阻抗頻譜分析
論文名稱(英文) Electrochemical impedance spectroscopy of inhibitor-type, barrier-type and sacrificial-type coating systems in chloride containing environment
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 林恩立
研究生(英文) En-Li Lin
學號 N56014067
學位類別 碩士
語文別 中文
論文頁數 133頁
口試委員 指導教授-蔡文達
口試委員-楊聰仁
口試委員-魏豊義
口試委員-謝克昌
中文關鍵字 抑制型塗料  阻絕型塗料  犧牲型塗料  電化學交流阻抗頻譜 
英文關鍵字 electrochemical impedance spectroscopy  inhibitive-type coating  barrier-type coating  sacrificial-type coating 
學科別分類
中文摘要 本研究針對三種不同防蝕類型之塗層系統於3.5 wt%氯化鈉水溶液之浸泡環境下,利用電化學交流阻抗頻譜分析技術觀察其耐蝕能力之變化。研究結果顯示三種防蝕塗料皆有時間之依存性,隨著浸泡時間增加,阻絕型與抑制型塗料之系統阻抗值分別以不同速率減小,而犧牲型塗料因內部所含鋅粉之陽極犧牲保護的作用,造成系統阻抗值先降後升,之後由於試片表面鋅的氧化與塗層本身劣化,再度使系統阻抗值降低。經浸泡試驗1440小時結果顯示,系統之極化阻抗值由大到小依序為阻絕型、犧牲型及抑制型防蝕塗料。此外,本研究中控制阻絕型塗料塗層厚度,觀察厚度對其耐蝕性質之影響,發現塗層厚度為90 μm時,阻抗值下降速率較60 μm緩慢,顯示厚度的增加可以有效延緩外部腐蝕性因子抵達基材的時間;改變浸泡環境中之氫離子濃度,發現不同的氫離子濃度會影響犧牲型塗料中鋅粉的反應機制,使塗層系統產生不同之耐蝕表現。
英文摘要 In this study, the corrosion resistances of three different types of coatings applied to a carbon steel substrate in 3.5 wt% NaCl solution was investigated by employing electrochemical impedance spectroscopy (EIS). The time-dependent behavior was focused. The experimental results showed that the impedances of the barrier-type and the inhibitive-type coatings decreased with increasing immersion time, but with different decay rate. After a dramatic decrease in the first stage of immersion, the impedance of the sacrificial-type coating increased slightly and followed with a decrease in magnitude with immersion time. After 1440 h immersion, the polarization resistances decreased in the following order: barrier-type > sacrificial-type > inhibitive-type. A coating thickness-dependent impedance behavior was observed for the barrier-type coating, while the sacrificial type coating was sensitive to acidity of the environment.
論文目次 摘要 I
Extended Abstract II
誌謝 X
總目錄 XII
表目錄 XIV
圖目錄 XV
第一章 前言 1
第二章 文獻回顧 3
2.1 電化學交流阻抗頻譜 3
2.1.1 基本介紹 3
2.1.2 等效電路之解析 6
2.1.3 電化學交流阻抗頻譜在塗層上的應用 11
2.2 常見的防蝕塗料種類 13
2.2.1 抑制型防蝕塗料 14
2.2.2 阻絕型防蝕塗料 16
2.2.3 犧牲型防蝕塗料 18
第三章 實驗方法與步驟 26
3.1 實驗材料 26
3.2 塗料種類及塗覆方法 26
3.3 鹽水暴露試驗 27
3.4 電化學性質分析 27
3.5 塗層系統之成分結構分析 28
3.5.1 表面形貌觀察 28
3.5.2 橫截面觀察 28
第四章 結果與討論 34
4.1 碳鋼基材之電化學性質 34
4.2 抑制型防蝕塗料之耐蝕性質 36
4.2.1 抑制型防蝕塗料之耐蝕性質 36
4.2.2 等效電路元件分析 39
4.3 阻絕型防蝕塗料之耐蝕性質 41
4.3.1 厚度60 μm阻絕型塗層系統之耐蝕性質 41
4.3.2 厚度90 μm阻絕型塗層系統之耐蝕性質 44
4.3.3 等效電路元件分析 46
4.4 犧牲型防蝕塗料之耐蝕性質 48
4.4.1 犧牲型塗層系統於中性氯化鈉水溶液中之耐蝕性質 48
4.4.2 犧牲型塗層系統於酸性氯化鈉水溶液中之耐蝕性質 51
4.4.3 犧牲型塗層系統於鹼性氯化鈉水溶液中之耐蝕性質 53
4.4.4 等效電路元件分析 55
第五章 討論 111
5.1 塗層厚度對阻絕型塗層系統之影響 111
5.2 暴露環境之氫離子濃度對犧牲型塗層系統之影響 114
5.3 抑制型、阻絕型與犧牲型塗層系統之比較 118
第六章 結論 124
參考文獻 125
參考文獻 [1] K. Bartoň, "Protection Against Atmospheric Corrosion : Theories and Methods," John Wiley And Sons Limited, 1976.
[2] W. Funke, "How Organic Coating Systems Protect Against Corrosion," in Polymeric Materials for Corrosion Control. vol. 322, ed: American Chemical Society, 1986, pp. 222-228.
[3] ASTM B117-11 Standard Practice for Operating Salt Spray (Fog) Apparatus1.
[4] ASTM D4541-09 Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers.
[5] ASTM D3359-09 Standard Test Methods for Measuring Adhesion by Tape Test.
[6] ASTM D610-08 Standard Practice for Evaluating Degree of Rusting on Painted Steel Surfaces.
[7] ASTM D1654-08 Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments.
[8] ASTM D714-02 Standard Test Method for Evaluating Degree of Blistering of Paints.
[9] ASTM D3363-05 Standard Test Method for Film Hardness by Pencil Test.
[10] ASTM D2803-09 Standard Guide for Testing Filiform Corrosion Resistance of Organic Coatings on Metal.
[11] ASTM D2616-12 Standard Test Method for Evaluation of Visual Color Difference With a Gray Scale.
[12] ASTM D870-09 Standard Practice for Testing Water Resistance of Coatings Using Water Immersion.
[13] F. Mansfeld, M. W. Kendig, and S. Tsai, "CORROSION KINETICS IN LOW CONDUCTIVITY MEDIA .1. IRON IN NATURAL-WATERS," Corrosion Science, vol. 22, pp. 455-471, 1982.
[14] 黃何雄, "顯微組織對碳鋼焊件電化學行為及腐蝕破裂特性影響之研究," 國立成功大學礦冶及材料科學研究所博士論文, 1994.
[15] T. P. Cheng, J. T. Lee, and W. T. Tsai, "PASSIVATION OF TITANIUM IN MOLYBDATE-CONTAINING SULFURIC-ACID-SOLUTION," Electrochimica Acta, vol. 36, pp. 2069-2076, 1991.
[16] N. Pebere, T. Picaud, M. Duprat, and F. Dabosi, "EVALUATION OF CORROSION PERFORMANCE OF COATED STEEL BY THE IMPEDANCE TECHNIQUE," Corrosion Science, vol. 29, pp. 1073-1086, 1989.
[17] 程子萍, "金屬材料鈍化現象之交流阻抗研究," 國立成功大學礦冶及材料科學研究所博士論文, 1990.
[18] G. W. Walter, "A REVIEW OF IMPEDANCE PLOT METHODS USED FOR CORROSION PERFORMANCE ANALYSIS OF PAINTED METALS," Corrosion Science, vol. 26, pp. 681-703, 1986.
[19] E. Gileadi, E. Kirowa-Eisner and J. Penciner, "Interfacial Electrochemistry, An Experimental Approach," Addison-Wesley Publishing, 1975.
[20] R. Naderi and M. M. Attar, "Electrochemical study of protective behavior of organic coating pigmented with zinc aluminum polyphosphate as a modified zinc phosphate at different pigment volume concentrations," Progress in Organic Coatings, vol. 66, pp. 314-320, 2009.
[21] F. Mansfeld and M. W. Kendig, "ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY OF PROTECTIVE COATINGS," Werkstoffe Und Korrosion-Materials and Corrosion, vol. 36, pp. 473-483, 1985.
[22] 張鑒清, "電化學測試技術," 化學工業出版社, pp. 256-265, 2010.
[23] 陳哲生, "設備的防蝕塗裝," 中工高雄會刊, vol. 17, pp. 45-52, 2010.
[24] 中國驗船中心技術通報, vol. 25, pp. 3-7, 2006.
[25] 黃玄昇、鄭慧英、陳哲生、陳文源, "快速硬化厚塗PU防蝕材," 中華民國鋼結構協會, pp. 1-9, 2011.
[26] 張文澤, "認識塗料," 行政院勞工委員會職業訓練局, pp. 16-17, 2001.
[27] M. G. Hosseini, M. Sabouri, and T. Shahrabi, "Comparison of the corrosion protection of mild steel by polypyrrole-phosphate and polypyrrole-tungstenate coatings," Journal of Applied Polymer Science, vol. 110, pp. 2733-2741, 2008.
[28] M. Hernández, J. Genescá, J. Uruchurtu, F. Galliano, and D. Landolt, "Effect of an inhibitive pigment zinc-aluminum-phosphate (ZAP) on the corrosion mechanisms of steel in waterborne coatings," Progress in Organic Coatings, vol. 56, pp. 199-206, 2006.
[29] Y. Hao, F. Liu, E.-H. Han, S. Anjum, and G. Xu, "The mechanism of inhibition by zinc phosphate in an epoxy coating," Corrosion Science, vol. 69, pp. 77-86, 2013.
[30] Y. Shao, C. Jia, G. Meng, T. Zhang, and F. Wang, "The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel," Corrosion Science, vol. 51, pp. 371-379, 2009.
[31] A. Guenbour, A. Benbachir, and A. Kacemi, "Evaluation of the corrosion performance of zinc-phosphate-painted carbon steel," Surface & Coatings Technology, vol. 113, pp. 36-43, 1999.
[32] R. Naderi and M. Attar, "The inhibitive performance of polyphosphate-based anticorrosion pigments using electrochemical techniques," Dyes and Pigments, vol. 80, pp. 349-354, 2009.
[33] S. M. Mousavifard, P. M. Nouri, M. M. Attar, and B. Ramezanzadeh, "The effects of zinc aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) mixtures on corrosion inhibition performance of epoxy/polyamide coating," Journal of Industrial and Engineering Chemistry, vol. 19, pp. 1031-1039, 2013.
[34] V. Jašková and A. Kalendová, "Anticorrosive coatings containing modified phosphates," Progress in Organic Coatings, vol. 75, pp. 328-334, 2012.
[35] R. Naderi and M. M. Attar, "The role of zinc aluminum phosphate anticorrosive pigment in Protective Performance and cathodic disbondment of epoxy coating," Corrosion Science, vol. 52, pp. 1291-1296, 2010.
[36] X. Shi, T. A. Nguyen, Z. Suo, Y. Liu, and R. Avci, "Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating," Surface and Coatings Technology, vol. 204, pp. 237-245, 2009.
[37] M. Conradi, A. Kocijan, D. Kek-Merl, M. Zorko, and I. Verpoest, "Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings," Applied Surface Science, vol. 292, pp. 432-437, 2014.
[38] J.-T. Zhang, J.-M. Hu, J.-Q. Zhang, and C.-N. Cao, "Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS," Progress in Organic Coatings, vol. 51, pp. 145-151, 2004.
[39] T. Thi Xuan Hang, T. A. Truc, T. H. Nam, V. K. Oanh, J.-B. Jorcin, and N. Pébère, "Corrosion protection of carbon steel by an epoxy resin containing organically modified clay," Surface and Coatings Technology, vol. 201, pp. 7408-7415, 2007.
[40] M. R. Bagherzadeh and F. Mahdavi, "Preparation of epoxy–clay nanocomposite and investigation on its anti-corrosive behavior in epoxy coating," Progress in Organic Coatings, vol. 60, pp. 117-120, 2007.
[41] M. D. Tomić, B. Dunjić, V. Likić, J. Bajat, J. Rogan, and J. Djonlagić, "The use of nanoclay in preparation of epoxy anticorrosive coatings," Progress in Organic Coatings, vol. 77, pp. 518-527, 2014.
[42] O. Ø. Knudsen, U. Steinsmo, and M. Bjordal, "Zinc-rich primers—Test performance and electrochemical properties," Progress in Organic Coatings, vol. 54, pp. 224-229, 2005.
[43] Y. Liu, H. Y. Li, and Z. G. Li, "EIS Investigation and Structural Characterization of Different Hot-Dipped Zinc-Based Coatings in 3.5% NaCl Solution," International Journal of Electrochemical Science, vol. 8, pp. 7753-7767, 2013.
[44] J. M. Bastidas, S. Feliu, M. Morcillo, and S. Feliu, "STUDY OF THE ELECTROCHEMICAL NOISE GENERATED BY THE MILD-STEEL ZINC-RICH PAINT NACL SOLUTION SYSTEM," Progress in Organic Coatings, vol. 18, pp. 265-273, 1990.
[45] C. M. Abreu, M. Izquierdo, M. Keddam, X. R. Novoa, and H. Takenouti, "Electrochemical behaviour of zinc-rich epoxy paints in 3% NaCl solution," Electrochimica Acta, vol. 41, pp. 2405-2415, 1996.
[46] N. Hammouda, "The Corrosion Protection Behaviour of Zinc Rich Epoxy Paint in 3% NaCl Solution," Advances in Chemical Engineering and Science, vol. 01, pp. 51-60, 2011.
[47] J. R. Vilche, E. C. Bucharsky, and C. A. Giudice, "Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel," Corrosion Science, vol. 44, pp. 1287-1309, 2002.
[48] D. Pereira, J. D. Scantlebury, M. G. S. Ferreira, and M. E. Almeida, "THE APPLICATION OF ELECTROCHEMICAL MEASUREMENTS TO THE STUDY AND BEHAVIOR OF ZINC-RICH COATINGS," Corrosion Science, vol. 30, pp. 1135-1147, 1990.
[49] C. A. Gervasi, A. R. Disarli, E. Cavalcanti, O. Ferraz, E. C. Bucharsky, S. G. Real, J. R. Vilche, "THE CORROSION PROTECTION OF STEEL IN SEA-WATER USING ZINC-RICH ALKYD PAINTS - AN ASSESSMENT OF THE PIGMENT-CONTENT EFFECT BY EIS," Corrosion Science, vol. 36, pp. 1963-1972, 1994.
[50] E. C. Bucharsky, S. G. Real, J. R. Vilche, A. R. Disarli, and C. A. Gervasi, "EVALUATION OF ZINC-RICH PAINT COATING PERFORMANCE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY," Journal of the Brazilian Chemical Society, vol. 6, pp. 39-42, 1995.
[51] H. Marchebois, C. Savall, J. Bernard, and S. Touzain, "Electrochemical behavior of zinc-rich powder coatings in artificial sea water," Electrochimica Acta, vol. 49, pp. 2945-2954, 2004.
[52] S. Shreepathi, P. Bajaj, and B. P. Mallik, "Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: Role of Zn content on corrosion protection mechanism," Electrochimica Acta, vol. 55, pp. 5129-5134, 2010.
[53] A. Meroufel and S. Touzain, "EIS characterisation of new zinc-rich powder coatings," Progress in Organic Coatings, vol. 59, pp. 197-205, 2007.
[54] H. Marchebois, M. Keddam, C. Savall, J. Bernard, and S. Touzain, "Zinc-rich powder coatings characterisation in artificial sea water - EIS analysis of the galvanic action," Electrochimica Acta, vol. 49, pp. 1719-1729, 2004.
[55] A. Meroufel, C. Deslouis, and S. Touzain, "Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings," Electrochimica Acta, vol. 53, pp. 2331-2338, 2008.
[56] A. Gergely, I. Bertóti, T. Török, É. Pfeifer, and E. Kálmán, "Corrosion protection with zinc-rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole-deposited alumina monohydrate particles," Progress in Organic Coatings, vol. 76, pp. 17-32, 2013.
[57] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," National Association of Corrosion Engineers, 1974.
[58] B. Chico, J. Simancas, J. M. Vega, N. Granizo, I. Diaz, D. de la Fuente, M. Morcillo, "Anticorrosive behaviour of alkyd paints formulated with ion-exchange pigments," Progress in Organic Coatings, vol. 61, pp. 283-290, 2008.
[59] 張偉、王佳、趙增元, "腐蝕電化學多參數相關法研究有機塗層失效子過程特徵," 腐蝕科學與防護技術, vol. 22, pp. 319-324, 2010.
[60] 王詔民, "析鍍條件及熱處理對磷酸錳鍍層微結構及電化學性能影響之研究 " 國立成功大學材料科學及工程學系博士論文, 2007.
[61] X. Liu, J. Xiong, Y. Lv, and Y. Zuo, "Study on corrosion electrochemical behavior of several different coating systems by EIS," Progress in Organic Coatings, vol. 64, pp. 497-503, 2009.
[62] D. D. N. Singh and S. Yadav, "Role of tannic acid based rust converter on formation of passive film on zinc rich coating exposed in simulated concrete pore solution," Surface & Coatings Technology, vol. 202, pp. 1526-1542, 2008.
[63] 劉宏偉、許剛、宋光鈴、林海潮、曹楚南, "防銹顏料三聚磷酸鋁作用機理的EIS研究," 中國腐蝕與防護學報, vol. 17, pp. 215-220, 1997.
[64] N. Hammouda, Y. Boudinar, M. Touiker, and K. Belmokre, "Study of the behavior of an organic coating applied on the storage reservoirs of oil in a medium of 3% NaCl solution and in marine environment," Materials and Corrosion, vol. 57, pp. 338-344, 2006.
[65] B. del Amo, R. Romagnoli, C. Deya, and J. A. Gonzalez, "High performance water-based paints with non-toxic anticorrosive pigments," Progress in Organic Coatings, vol. 45, pp. 389-397, 2002.
[66] M. Mouanga and P. Bercot, "Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part II: Electrochemical analyses," Corrosion Science, vol. 52, pp. 3993-4000, 2010.
[67] P. Delahay, M. Pourbaix, and P. Vanrysselberghe, "POTENTIAL-PH DIAGRAM OF ZINC AND ITS APPLICATIONS TO THE STUDY OF ZINC CORROSION," Journal of the Electrochemical Society, vol. 98, pp. 101-105, 1951.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw