進階搜尋


下載電子全文  
系統識別號 U0026-1908201110203500
論文名稱(中文) 微量潤滑對刀腹磨耗及銑削穩定性之影響
論文名稱(英文) Influence of Minimal Quantity Lubrication on Flank Wear and Stability in End Milling
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 郭晉瑋
研究生(英文) Jin-Wei Kuo
學號 N16984612
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-王俊志
口試委員-李榮顯
口試委員-張煌權
中文關鍵字 微量潤滑  刀腹磨耗  比切削係數  銑削穩定性  製程阻尼  切屑型態 
英文關鍵字 MQL  Flank wear  Cutting constant  Milling stability  Process damping  Chip form 
學科別分類
中文摘要 本文提出一個以銑削力模式為基礎的方法來評估兩種不同之微量潤滑方式對刀腹磨耗以及銑削穩定性之影響。本文利用DGCC的銑削力模式建立切向犁切削係數與刀腹磨耗之關係,因此可以在不用卸下刀具情況下而直接在線上量測刀具的磨耗情形,且根據無因次化切向犁切削係數結果可以說明兩種微量潤滑之效益,由實驗結果發現比磨耗能以乾切削最大,其次是傳統MQL而超音波二流體最小,比磨耗能越大表示切向犁切削係數隨磨耗成長越快。根據同一個銑削力模式也可以推導出銑削過程中的極限穩定方程式,利用此一極限穩定方程式所得出的臨界穩定切深可作為評估銑削穩定性的指標,由實驗結果發現在潤滑添加下銑削SKD61模具鋼之臨界切深有明顯之提升,其中微量潤滑之方式最能有效提升臨界切深,相較於乾切削可增加臨界切深約40%其次為一般濕切削可增加臨界切深約30%,從模式中可以推測出製程阻尼之提升為提升臨界切深之主要原因。
英文摘要 This study presented a cutting force model based to approach the influence of two different kinds of Minimal Quantity Lubrication methods on flank wear and stability. We utilized the DGCC milling force model to construct the relationship between tangential cutting coefficient for the plowing and flank wear. Therefore, we could measure the value of flank wear on line without disassembling the tool. And according to the results of dimensionless the tangential cutting coefficient for the plowing, we could explain the efficiency of two kinds of MQL. The experimental results revealed that the specific abrasion energy in dry cutting was the largest, the conventional MQL was next, and two-fluid ultrasonic lubrication was the smallest one. Specific abrasion energy grew with the tangential cutting coefficient for the plowing, the larger tangential cutting coefficient for the plowing was, and the faster Specific abrasion energy grew. According to the same milling force model we could derivative the limit stability equation, and utilized critical depth of cut which was found by the limit stability equation to be the indicator of milling stability estimate. From the experiment results we could found that the critical depth of cut of milling SKD61 with MQL was the most effective way to increase critical depth of cut, and it could increase critical depth of cut by 40% or so as compared with dry cutting. General wet cutting secondly increased critical depth of cut by about by 30% or so. We could conjecture that the increase of process damping was the main reason for the increase of critical depth of cut.
論文目次 中文摘要 I
ABSTRACT II
致謝 III
總目錄 IV
圖目錄 VII
表目錄 XI
符號說明 XII
第一章 1
緒論 1
1.1研究動機 1
1.2 文獻回顧 2
1.2.1 銑削力模式建立文獻回顧 2
1.2.2 微量潤滑對切削加工影響之相關文獻 4
1.2.3各種磨耗量測與判斷之相關文獻 4
1.2.4 切削穩定性與製程阻尼之相關文獻 5
1.3研究範疇及論文架構 6
第二章 7
端銑刀之銑削力模式 7
2.1 前言 7
2.2銑刀座標系統 7
2.3包含剪切、犁切局部側銑模式 10
2.3.1 LGCC局部銑削力模式 11
2.3.2 DGCC局部銑削力模式 12
2.4單刃側銑總銑削力 14
2.4.1屑寬密度函數 14
2.4.2 刀刃序列函數 15
2.4.3 總銑削力 16
2.4.4比切削係數的辨識方法 16
第三章 18
實驗設備與規劃 18
3.1前言 18
3.2實驗設備 21
3.2.1CMQL與超音波二流體潤滑設備 21
3.2.2噴霧粒徑量測 23
3.2.3實驗刀具 27
3.2.4實驗材料 28
第四章 29
不同潤滑條件對刀具磨耗之預測 29
4.1刀腹磨耗實驗流程 29
4.2比切削係數準確性之驗證 30
4.3 前導實驗-不同切削長度之比切削係數 32
4.4刀腹磨耗實驗 36
4.4.1刀具磨耗端銑銑削力模式 36
4.4.2刀腹磨耗實驗參數規劃 37
4.4.3刀腹磨耗定義 39
4.4.4刀腹磨耗在不同微量潤滑方式下對切向犁切力常數之影響 41
4.4.5考慮刀腹磨耗端銑銑削模式修正 45
4.4.6不同潤滑方式ktp成長倍率對刀具壽命之影響 46
第五章 48
不同潤滑對銑削系統穩定性之影響 48
5.1 銑削穩定性之動態銑削模式 48
5.2機台結構參數測試 49
5.2.1 工件夾持之結構參數 50
5.2.2 刀具夾持結構參數 51
5.3顫振實驗規畫 53
5.4顫振之判斷 55
5.4.1 振動訊號及頻譜分析 55
5.4.2 切屑型態觀測與模擬 56
5.5穩定耳垂圖之趨勢 60
5.6銑削穩定實驗一 61
5.7潤滑製程阻尼之影響 65
5.8銑削穩定實驗二 68
5.9 潤滑條件改變對振動量之影響 74
5.10 銑削穩定實驗與刀腹磨耗參數之關係 76
第六章 77
結論與建議 77
6.1結論 77
6.2建議 79
參考文獻 80
參考文獻 Attanasio, A.,Gelfi, M.,Giardini, C. andRemino, C., 2006, “Minimal quantitylubricationin turning: Effect on tool wear,” Wear, Vol. 260, pp.333-338.
Bayvel and Orzechowski, ”Liquid Atomization,1993,” Taylor & Francis publisher.
Budak, E., Altintas, Y., and Armarego E. J. A. , 1998, “Prediction of Milling Force Coefficients From Orthogonal cutting Data, “ ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.
Chiba, Suzuki, and Kusano,1990, “On the pneumo-acoustic liquid atomization,”Bulletin of the Yamagata University (Engineering) Vol 21,pp 1-10.
Dan, I.,Mathew, J.,1990,“Tool wear and monitoring techniques for turning-a review,” Int. J. Mach. Tools Manuf. Vol.30, pp.579-598.
Eneres, W. J., DeVor R.E. and Kapoor S. G. , 1995, “A Dual-Mechanism Approach to the Prediction of Machining Forces,” ASME Journal of Engineering for Industry, Vol. 117, pp. 526-541.
Geoffrey, B., 1975,“Fundamentals of Metal Machining and Machine Tools, 2nd printing,” CENTRAL BOOK COMPANY at Taipei, Taiwan.
Hanyu, H., Kamiya,S.,Murakami, Y.,Saka, M., 2003, “Dry and semi-drymachining using finely crystallized diamond coating cutting tools,”Surface& Coatings Technology, Vol. 174-175, pp. 992-995.
Heinemann, R.,Hinduja, S.,Barrow, G.,Petuelli, G., 2006, “Effect of MQL onthe tool life of small twist drills in deep-hole drilling,” InternationalJournal of Machine Tools and Manufacture, Vol. 46, pp. 1-6.
Huang, C. Y.,Wang, J. J. Junz, 2007, “Mechanistic Modeling of ProcessDamping in Peripheral Milling,” Journal of Manufacturing Science and Engineering FEBRUARY, Vol. 129 pp.12-20.
Huang, C. Y.,Wang, J. J. Junz, 2009, “MODE COUPLING BEHAVIOR IN END MILLING,” Journal of Manufacturing Science and Engineering November 13-19.
Jemielniak, K., and Widota, A., 1989, “Numerical Simulation of Non-linearChatter Vibration in Turning,” Int. J. Mach. Tools Manuf., Vol. 29, pp. 239–247.
Klocke,F.,Eisenblätter, G., 1997, “Dry cutting,” Annals of the CIRP, Vol. 46,pp. 519-526.
Koenigsberger, F., and Sabberwal, A. J. P.,1961, “An Investigation into the Cutting Force Pulsations During Milling Operations, “International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.
Martellotti, M. E., 1941, “An Analysis of the Milling Process, “Transaction of ASME, Vol. 63, pp.677-700.
Martellotti, M. E., 1945, “An Analysis of the Milling Process, Part 2: Down Milling, “Transaction of ASME, Vol. 67, pp. 233-251.
Melkote, S. N.and Endres W. J., 1998, “The Importance of Including Size Effect When Modeling Slot Milling, “ ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75
MICHELETI, G. F,KOENIG, W., andVICTOR, H. R., 1975, Annals CIRP Vol.24,349-354
Minis ,I., and Yanushevsky, T.,1993, “A New Thoeretical Approach for the Prediction of Machine ToolChatter in Milling,” ASME Journal of Prediction of Engineering for Industry,Vol.18,pp.1-8
Montgomery,D.,and Altintas, Y., 1991, “Mechanism of Cutting Force andSurface Generation in Dynamic Milling,” ASME J. Eng. Ind., 113, pp. 160–168.
Rahman,M., andSenthil Kumar, A.,Salam, M. U., 2002, “Experimentalevaluation on the effect of minimal quantities of lubricant in milling,”International Journal of Machine Tools and Manufacture, Vol. 42, pp.593-547.
Sabberwal, A. J. P., 1961, “Chip Section and Cuting Force During the Milling Operation, “Annals of the CIRP, Vol. 10, pp. 197-203.
Sarhan, A.,Sayed , R.,Nassr,A. andEl-Zahry R. M.,2001 “Interrelationships between cutting force variation and tool wear in end-milling, “Journal of Materials Processing Technology 109.229-235.
Shaw, M. C., Metal Cutting Principles,1995, 2nd ed. Oxford, New York.
Smith, G. T., 1989, Advanced Machining: The Handbook of CuttingTechnology, Springer-Verlag, London.
Tarng, Y. S., Young, H. T., and Lee, B. Y., 1992, “An Analytical Model ofChatter Vibration in Metal Cutting,” Int. J. Mach. Tools Manuf., Vol. 34, pp.183–197.
Tawakoli, T.,Hadad, M.J.,Sadeghi, M.H.,2010 “ Influence of oil mist parameters onminimum quantity lubrication – MQL grinding process,’’ International journal of Machine Tools & Manufacture 50 521–531
Tlusty, J., and Ismail, F., 1983, “Special Aspects of Chatter in Milling,” ASMEJ. Eng. Ind.,Vol. 105, pp. 24–32.
Tlusty, J., and MacNeil, P. , 1975, “Dynamics of Cutting Forces in End Milling, “CIRP annals, Vol. 24, pp. 21-25.
Tobias, S.A., and Fishwick, W.W.,1958, “Theory of Regenerative Machine Tool Chatter,”Engineering,205
Tony, L.S.,Smith, K.S., 2009,“ Machining Dynamics-Frequency Response to Improved Productivity, ’’New York,Springer
Wang, J. J. and Liang S. Y. and Book W. J. 1994, “Convolution Analysis of Milling Force Pulsation, “ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.
Wang, J. J., 1992, “Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, “ph.D.thesis, School of Mechanical Engineering, Georgia Institute of Technology, April.
Wang, J. J., andZheng C. M., 2002, “An analytical force model with shearing and ploughing mechanisms for end milling,” International Journal of Machine Tools & Manufacture, Vol.42, pp.761-771.
Wang, J.J., andZheng, C. M., 2002, “An Analytical Force Model with Shearingand Ploughing Mechanisms for End Milling,” Int. J. Mach. Tools Manuf.,Vol. 42, pp. 761–771.
Weck, Manfred, 1980,“Handbook of Machine Tools,’’ John Wiley & Sons Ltd, pp.60–61.
Yellowley, I.,1985,“Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process,” International Journal of Machine Tool Design and Research, Vol. 25, No. 4, pp. 337-346.
張煌權,包含側邊及底面犁切力之端銑及面銑力模式,國立成功大學機械研究所,九十年碩士論文
鄭茗元,SKD61硬化模具鋼銑削特性之探討,國立成功大學機械研究所,九十年碩士論文
王栢村(2002),振動學,全華科技圖書股份有限公司,第三章,頁3-5~3-7
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw