系統識別號 U0026-1908201023462700 論文名稱(中文) LED 燈具之矩形鰭片上的熱傳特性預測 論文名稱(英文) Estimation of Heat Transfer Characteristics from Rectangular Fins in LED Lamp 校院名稱 成功大學 系所名稱(中) 機械工程學系專班 系所名稱(英) Department of Mechanical Engineering (on the job class) 學年度 98 學期 2 出版年 99 研究生(中文) 林昆燁 研究生(英文) Kun-Yeh Lin 學號 n1796103 學位類別 碩士 語文別 中文 論文頁數 99頁 口試委員 指導教授-陳寒濤口試委員-葉榮華口試委員-鄭金祥 中文關鍵字 LED  逆算法  矩形鰭片  熱傳量  熱傳係數 英文關鍵字 LDE  Inverse method  rectangular fin  heat transfer coefficient 學科別分類 中文摘要 發光二極體(LED)為近代節能計畫光源的代表，具有省電與壽命長等優點，但事實上LED 卻是一種高熱的發光元件，無法有效的將LED所產之熱能散出，將導致發光效率嚴重下降，因此LED之散熱已成為其使用效率之重要條件。LED燈具最根本散熱系統為鰭片散熱，鰭片結構不僅易製作、穩定且經濟。本文乃以有限差分法(Finite difference method)並配合最小平方法(Least-squares scheme)及溫度量測值來研究LED燈具上鰭片之平均熱傳係數(Average heat transfer coefficient)、總熱傳量(Total heat transfer rate)和鰭片效率(Fin efficiency)。鰭片上的熱傳係數是不均勻的，為了利用鰭片上的溫度量測值來預測鰭片上之熱傳係數，因此將鰭片分割成數個小區域，並假設每個區域上的熱傳係數為常數。結果顯示，於自然對流(Free convection)之條件下，平均熱傳係數會隨著鰭片間距增加而提高，卻隨鰭片高度增加而減小。而在強制對流(Forced convection) 與相同風速之條件下，平均熱傳係數會隨著鰭片間距增加而減小並趨近於單一鰭片之值。本文所估算之平均熱傳係數與相關文獻之經驗公式相比較，已驗證本文逆算法之準確性及經驗公式之合理性。 英文摘要 LED, the illuminating light source in energy saving, can save more power and have longer life cycle comparing to traditional light source. In fact, LED is a lighting component with high heat. That high heat of LED can’t be transferred effectively will seriously result in lower illuminating efficiency. Thus, heat transfer function of LED has played an important role in its working efficiency. A fin is a basic heat transfer system of the LED lamp, which is not only easy to produce, but also stable and economical. The present study applies the finite-difference method in conjunction with the least-squares scheme and measured temperatures to estimate the average convection heat transfer coefficient, total heat transfer rate, and fin efficiency on a vertical rectangular fin. The heat transfer coefficient on this rectangular fin is non-uniform. Thus the whole plate fin is divided into several sub-fin regions in order to predict the average heat transfer coefficient. The heat transfer coefficient on those sub-fin regions is assumed to be constant. The results show that the average heat transfer coefficient increases with increasing the fin spacing and decreases with increasing the fin height in free convection. The average heat transfer coefficient decreases with increasing the fin spacing for a fixed air speed in forced convection.. However, this value approaches its corresponding asymptotical value obtained from a single fin as S → ∞ . In order to evidence the accuracy of the present inverse scheme and the reliability of some experimental formulas, a comparison of the average heat transfer coefficient between the present predicated results and those obtained from correlation recommended by current textbook is made. 論文目次 中文摘要..........I 英文摘要..........II 致謝..........III 目錄..........IV 表目錄..........VII 圖目錄..........IX 符號說明..........XIII 第一章 緒論..........1 1-1 研究背景..........1 1-2 文獻回顧..........3 1-3 研究目的..........6 1-4 研究重點與本文架構..........7 第二章 實驗原理與數值模擬分析..........9 2-1 LED發光原理與發熱現象..........9 2-2 LED散熱現況..........9 2-3 二維理論分析簡介..........10 2-4 建立數學模式..........12 2-4-1 數值方法分析..........14 2-4-2 逆向熱傳導方法..........17 2-5 結果與討論..........22 2-5-1 溫度量測誤差對預測值之影響..........23 2-5-2 起始猜測值對預測值之影響..........24 2-5-3 溫度量測位置與數目對預測值之影響..........25 2-6 結論..........25 第三章 實驗操作與數據分析..........35 3-1 簡介..........35 3-2 實驗設備..........35 3-3 實驗步驟..........39 3-3-1 自然對流實驗步驟..........39 3-3-2 水平吹風強制對流實驗步驟..........40 3-3-3 垂直抽風強制對流實驗步驟..........41 3-4 實驗組別..........41 3-5 實驗結果與數據分析..........42 3-5-1 鰭片根部溫度函數定義..........42 3-5-2 熱傳性質於自然對流分析..........43 3-5-3熱傳性質於強制對流分析..........47 3-6 結論..........49 第四章 綜合結論與未來展望..........92 4-1 數值模擬結果..........92 4-2 實驗結果..........92 4-3 綜合討論..........93 4-4 未來發展與建議..........93 參考文獻..........94 自述..........99 參考文獻 [1] M. Arik, J. Petroski, S. T. Weaver, “Challenges in the future generation solid state lighting applications: light emitting diodes, ” ASME/IEEE International Packaging Technical Conference, New York, pp. 113-120, 2002. [2] 李豫華，發光二極體的散熱技術，科學發展，vol. 435, pp. 18-21, 2009. [3] I. Niki, Y. Narukawa, D. Morita, S. sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamata, and T. Mukai, “White LEDs for solid state lighting, ” Proc. SPIE, vol. 5187, pp. 1-9, 2004. [4] G. Murtaza and J. M. Senior, “Method for extracting thermally stable optical singles from a CaAlAs LED source, ” IEEE Photonics techno. Vol. 7, pp. 479-481, 1995. [5] Y. Gu, N. Narendran, and J. P. Freyssinier, “White LED performance, ” proc. SPIE, Vol. 5530, pp. 119-124, 2004. [6] S. C. Bera, R. V. Singh, V. K. Garg, “Temperature behavior and compensation of light-emitting diode, ” IEEE Photonics technol. Lett, pp. 2286-2288, 2005. [7] L. V. Panina, K. Mohri, K. Bushida, “Giant magneto-impedance and magneto-inductive effects in amorphous alloys, ” J Appl Phys, Vol. 76, pp. 6198-6203, 1994. [8] P. Delooze, L. V. Panina, D. J. Mapps, “Resolution differential magnetic field sensor utilizing asymmetrical magneto impedance in multiyear films, ” IEEE Trans Magn, vol, 40, pp. 2664-2666, 2004. [9] T. E. Schmidt, “Heat transfer calculations for extended surfaces, ” Refri. Eng. , pp. 351-357, 1949. [10] J. R. Bodoia, J. F. Osterle, “The development of free convection between heated vertical plates, ” ASME J. Heat Transfer, Vol. 84, pp. 40-44, 1962. [11] J. H. Sununu, “The effect of spacing on the efficiency of extended surfaces for natural convection cooling, ” Proceedings of the National Elect. Packaging and Production Conf., pp. 30-40, 1963. [12] L. F. Smith, “An interferometer investigation of optimum rectangular fin geometry for maximum free-convection heat transfer from a finned horizontal surface, ” MS thesis, The Ohio State University, 1963. [13] C. D. Jones, L. F. Smith, “Optimum arrangement of rectangular fins on horizontal surface for free-convection heat transfer, ” ASME J. Heat Transfer, pp. 6-10, 1970. [14] S.Naik, S. D. Probert, I. G. Bryden, “Heat transfer characteristics of shrouded longitudinal ribs in turbulent forced convection, ” Int. J. Heat Fluid Flow, Vol. 20, pp. 374-384, 1999. [15] E. M. Sparrow, A. Haji-Sheikh and T. S. Lundgern, “ The inverse problem in transient heat conduction, ” J. Appl. Mech., Vol. 86, pp. 369-375, 1964. [16] N. M. Alnajem, M. N. Özisik, “A direct analytical approach for solving linear inverse heat conduction problems, ” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985. [17] J. V. Beck, “Calculation of surface heat flux from an integral temperature history, ” ASME J. Heat Transfer, Vol. 62, pp.46-51, 1962. [18] J. V. Beck, “Surface heat flux determination using an integral method, ” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968. [19] J. V. Beck, B. Litkouhi, C. R. Stclair, “Efficient numerical-solution of nonlinear inverse heat-conduction problem, ” Mech., Vol. 102, pp.96-96, 1980. [20] O. M. Alifanov, “Solution of an inverse problem of heat conduction by iteration method, ” J. Eng. Phys., Vol. 26, pp. 471-476, 1974. [21] E. P. Scott, and J. V. Beck, “Analysis of order of the sequential regulation solutions of heat conduction problem, ” ASME J. Heat Transfer, Vol. 111, pp.218-224, 1989. [22] J. V. Beck, and D. A. Murio, “Combined function specification regularization procedure for solution of inverse heat conduction problem, ” AIAA J., Vol. 24, pp. 180-185, 1986. [23] J. Deans, J. Neal, “The use of effectiveness concepts to calculate the thermal resistance of parallel plate heat sinks, ” Heat Transfer Eng., Vol. 27, pp. 56-67, 2006. [24] S. Lee, “Optimun design and selection of heat sink, ” Proceedings of IEEE Semi-Term Symposium, pp. 48-54, 1995. [25] 劉建佳，Pentium 4 散熱模組底板具凸起物之散熱性能研究，國立台灣科技大學機械工程研究所，碩士論文，2002 [26] 張文奎，散熱鰭片擴散熱阻之分析，國立清華大學工程與系統科學研究所，碩士論文，2002. [27] H. T. Chen, J. P. Song, Y. T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, ” Int. J. Heat Mass Transfer, Vol. 48, pp. 2697-2707, 1993. [28] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer coefficient from the vertical fin of finned-tube heat exchangers, ” Int. J. Heat Mass Transfer, Vol. 49, pp. 3034-3044, 1993. [29] 劉立熙，根據實驗溫度量測值估算矩形鰭片上之熱傳特性，國立成功大學機械工程研究所，碩士論文，2007. [30] 徐國軒，以逆算法估算自然對流下垂直矩形鰭片上的熱傳特性，國立成功大學機械工程研究所，碩士論文，2008. [31] A. Bar-Cohen, W. M. Rohsenow, “Thermally optimum spacing of vertical, natural convection cooled, parallel plates, ” ASME J. Heat Transfer, Vol. 106, pp. 116-123, 1984. [32] K. Raznjevic, “Handbook of Thermodynamic Tables and Charts, ” McGraw-Hill, New York, 1976. [33] F. Harahap and H. Lesmana, “Measurements of heat dissipation from miniaturize vertical rectangular fin arrays under dominant natural convection conditions, ” Heat Mass Transfer, Vol. 42, pp. 1025-1036, 2006. [34] C. W. Leung and S. D. Probert, “Heat exchanger performance: Effect of orientation, ” Applied energy, Vol. 33, pp. 235-252, 1989. [35] C. W. Leung and S. D. Probert, “Thermal effectiveness of short-protrusion rectangular heat exchanger fins, ” Applied energy, Vol. 34, pp. 1-8, 1989. [36] T. Igarashi and Y. Mayumi, “Fluid flow and heat transfer around a rectangular cylinder with small inclined angle (the case of a width/height ratio of a section of 5), ” Int. J. Heat Fluid Flow, vol. 22, pp. 279-286, 2001. [37] 施順榮，整合基因演算法與熱流分析軟體進行散熱模組最佳化，國立成功大學航空太空工程研究所，碩士論文，2008. [38] 鄭憶湘，散熱片在強制對流下之最佳化設計與實驗，國立清華大學工程與系統科學研究所，碩士論文，2002. [39] F. P. Incropera, D. P. Dewitt, “Introduction to heat transfer, ” ed., John Wiley & Sons, pp. 8 and 457, 1996. 論文全文使用權限 同意授權校內瀏覽/列印電子全文服務，於2012-08-24起公開。同意授權校外瀏覽/列印電子全文服務，於2013-08-24起公開。

 如您有疑問，請聯絡圖書館 聯絡電話：(06)2757575#65773 聯絡E-mail：etds@email.ncku.edu.tw