進階搜尋


   此篇論文尚未公開,紙本請查詢成功大學館藏
系統識別號 U0026-1908201010342100
論文名稱(中文) 高雄縣大崗山石灰岩洞穴石筍(DGS-01)沉積環境與特徵
論文名稱(英文) Environmental and depositional features of stalagmite DGS-01 from a limestone cave in Dagangshan, Kaohsiung County
校院名稱 成功大學
系所名稱(中) 地球科學系專班
系所名稱(英) Department of Earth Sciences (on the job class)
學年度 98
學期 2
出版年 99
研究生(中文) 李志中
研究生(英文) Chih-Chung Lee
學號 l4797101
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-李紅春
口試委員-陳燕華
口試委員-張詠斌
中文關鍵字 石筍  台灣  大崗山  古氣候  穩定同位素  微量元素 
英文關鍵字 Stalagmite  Taiwan  Dagangshan  Paleoclimate  Stable Isotopes  Trace Elements 
學科別分類
中文摘要 為利用石筍的沉積環境與特徵研究台灣西南部古氣候和環境變化,2009年自高雄縣大崗山減肥洞採集一個13.7cm長的石筍DGS-01,經由石筍頂部0.6 cm部分自上而下的6個樣品的Pb-210數據已無衰變規律且趨近於零,顯示石筍已停止生長至少百年。使用鈾系質譜定年結果,由於樣品的釷含量很高,定年結果誤差較大,我們從3個數據中選出2個比較合理的Th/U年齡,建立石筍老於100年部分的年齡,綜合U-Th和Pb-210定年結果,推估此石筍年齡約6000年左右,頂部5.1cm生長速率約0.040mm/year,5.1~11.2cm部分生長速率約0.012mm/year。
石筍DGS-01含雜質較多,紋層清晰,無明顯生長間斷,沉積韻律明顯,大致上呈現δ18O、δ13C值偏輕指示較濕潤的氣候時,紋層顏色較淺,δ18O、δ13C偏重指示較乾燥的氣候時,紋層顏色較深,但沉積紋層顏色的變化尚受其他因素的影響,因此對於利用石筍沉積特徵的韻律性來作為氣候環境演化過程的指標應更加謹慎。我們利用微量元素計算得Mg/Ca的分配係數DMg值平均為0.0255、Sr/Ca的分配係數DSr值平均為0.1216,提供以石筍DGS-01微量元素作為古氣候代用指標的基礎數據。
在石筍DGS-01頂部0~14mm部分,每0.1mm採集一個樣品,共取得140個樣品進行δ18O、δ13C值測量。這段高解析度石筍記錄反映台灣西南部近100~450年間氣候變化可分成三個階段,由第Ⅰ階段(深度11.7~14mm,約450年前~390年前) δ18O值在-7.09~-5.37‰之間變化,平均值為-6.31‰;δ13C值在-8.07~-4.61‰之間變化,平均值為-6.12‰。δ18O、δ13C平均值最重,反映降雨量較小、C4植被相對發育較好的乾燥氣候型態。第Ⅱ階段(深度4.8~11.6mm,約390年前~220年前),δ18O值在-8.79~-6.76‰之間變化,平均值為-8.00‰;δ13C值在-10.46~-5.14‰之間變化,平均值為-8.31‰。δ18O、δ13C平均值偏輕,反映降雨量增多、C3植被逐漸發育的較為穩定又濕潤的氣候型態。第Ⅲ階段(深度0~4.7mm,約220年前~100年前),δ18O的變化幅度增大,顯示降雨量變化加劇。C3植被更為發育,且植被受降雨變化影響波動較大,此階段亦為濕潤的氣候。由於整個記錄均處於小冰期階段,我們可以看見季風地區的氣候並非只有冷-乾與暖-濕的水熱配合模式,也能看到冷-濕的組合。
石筍DGS-01的δ18O有著20~40年周期性變化存在,和Brückner周期(35年)以及東亞夏季風30~40年周期相近,可做為近500年來太陽活動變化和東亞季風的循環周期相關研究之佐證,而若能更精確的定年與完整對比分析,將可提供台灣近6000年來古氣候與環境變化之研究基礎。
英文摘要 In order to study paleoclimate and paleoenvironment in the southwestern Taiwan, we collected a stalagmite (DGS-01) which is 13.7cm in length from Jianfei Cave in Dagangshan Hill in 2009. The Pb-210 dating on the upper 0.6 cm of the stalagmite shows that the stalagmite stopped to grow at least 100 years ago. Three ICP-MS 230Th/U dates have been made on the stalagmite, but with large uncertainties due to high detrital Th contents. The two reasonable 230Th/U dates and Pb-210 dating indicate that the stalagmite had grown from 6000 years ago to about 100 years ago. The growing rates of the stalagmite are 0.040 mm/year in the upper 5.1 cm and 0.012 mm/year between 5.1 and 11.2 cm.
The stalagmite DGS-01 exhibits clear growth laminations without apparent growth hiatus. In general, light δ18O and δ13C layers reflecting wetter climate are corresponding to lighter lamination bands, and vice versa. However, other non-climatic factors may affect the growth laminations too. Therefore, we should be cautious when we use the characteristics of stalagmite lamination to interpret climate change. From the trace elemental analyses, we calculate the mean Mg/Ca partitioning coefficient, DMg = 0.0255, and the mean Sr/Ca partitioning coefficient, DSr = 0.1216. Those parameters are the basic data for using the trace elements of the stalagmite DGS-01 to reconstruct paleoclimate.
According to the δ18O and δ13C values of 140 samples from the upper 0-14mm of the staglagmite DGS-01, the climatic conditions during 100-450 years in the southwestern Taiwan can be separated into 3 stages. During the I stage (11.7-14mm in depth, from 450~390 years ago), the climatic conditions were dry under weaker summer monsoon, and C4/C3 plant ratio was increased in vegetation. During the II stage (4.8-11.6mm in depth, from 390 to 220 years age), the climatic conditions were relatively wet and stable under stronger summer monsoon. With more rainfall, the vegetation intensity was increased and the C3/C4 plant ratio might be increased. During the III stage (0-4.7mm in depth, 220 to 100 years ago), the averageδ18O and δ13C values were light representing wetter climate and more C3 vegetation. However, the variations of the δ18O and δ13C values were much larger than the previous stages, indicating climate change dramatically. The three stages were all in the Little Ice Age (LIA), reflecting that the climatic modes in the monsoon area had not only cold/dry and warm/wet patterns, but also cold/wet and warm/dry.
The δ18O and δ13C records of stalagmite DGS-01 reveal 20-40 years periodical change, similar to the Brückner cycle (35 years) and the 30-40 years period of the monsoon in the eastern Asia. Our preliminary study on the stalagmite provides the first Holocene record of high-resolution speleothem record in Taiwan. With future work on dating and complete comparative analysis, we are able to obtain climate and environmental changes in Taiwan during the past 6000 years.
論文目次 摘要………………………………………………………………………Ⅰ
Abstract……………………………………………………………………Ⅲ
誌謝………………………………………………………………………Ⅴ
目錄………………………………………………………………………Ⅵ
表目錄……………………………………………………………………Ⅸ
圖目錄……………………………………………………………………Ⅹ

第一章 前言………………………………………………………………1
1.1 研究背景…………………………………………………………1
1.2 研究目的…………………………………………………………3
1.3 前人研究…………………………………………………………3
1.3.1 碳同位素相關研究…………………………………………4
1.3.2 氧同位素相關研究…………………………………………6
1.3.3 洞穴碳酸鹽沉積物微量元素相關研究……………………7
1.3.4 台灣石筍的前期研究………………………………………8
第二章 原理………………………………………………………………9
2.1 洞穴石筍形成基本原理…………………………………………9
2.2 同位素分餾原理..................................10
2.2.1 碳同位素…………………………………………………10
2.2.2 氧同位素…………………………………………………11
2.3 儀器分析原理……………………………………………………11
2.3.1 同位素比值質譜儀(IRMS)………………………………11
2.3.2 等離子體發射光譜儀(ICP-OES)…………………13
2.3.3感應偶合電漿質譜儀(ICP-MS)……………………………14
第三章 研究區域介紹……………………………………………………17
3.1研究區域環境概述……………………………………………17
3.2研究區域地質概述……………………………………………18
3.3研究區域氣候概述……………………………………………20
3.4研究區域植被概述……………………………………………20
3.5樣本採集地點(減肥洞)概述…………………………………21
第四章 實驗方法與樣品取樣……………………………………………26
4.1 研究方法…………………………………………………………26
4.2 樣品取樣位置……………………………………………………27
4.3 實驗步驟…………………………………………………………29
4.3.1 X光繞射分析儀(X-ray Diffractometer)…………………29
4.3.2 U-Th定年…………………………………………………30
4.3.3 Pb-210定年………………………………………………31
4.3.4 石筍碳氧同位素分析流程………………………………31
4.3.5 石筍微量元素分析流程…………………………………32

第五章 樣品觀察與分析結果…………………………………………33
5.1 樣品外觀描述……………………………………………………33
5.2 數據與結果………………………………………………………34
5.2.1 XRD分析…………………………………………………34
5.2.2 Pb-210定年………………………………………………35
5.2.3 U-Th定年…………………………………………………37
5.2.4 水系穩定同位素分析…………………………………40
5.2.5 沉積特徵和微量元素分析………………………………42
5.2.6 碳氧穩定同位素記錄……………………………………50
5.2.6.1 DGS-01沉積平衡檢驗……………………………50
5.2.6.2 碳氧穩定同位素分析……………………………52

第六章 結論………………………………………………………………57
參考文獻…………………………………………………………………59
參考文獻 中文部分
王建力,袁道先,李廷勇,何瀟,李清,氣候變化的岩溶記錄,科學出版社,北京,3-168,2008。
王鑫,台灣的地形景觀,渡假出版社有限公司,250頁,1980。
交通部中央氣象局,1897~2008台灣氣候變化統計報告,1-77,2009。
何瀟,王建力,李清,李紅春,李廷勇,程海,重慶地區石筍沉積速率與古氣候意義初探,中國岩溶,26(3),196-201,2007。
李俊云,李紅春,劉子琦,袁道先,何瀟,王若梅,貴州中西部洞穴水系與碳酸鈣沉積物的Mg/Sr比值和地球化學特徵,中國岩溶,25(3),177-186,2006。
李紅春,顧德隆,Paulsen, D. E.,陜南石筍穩定同位素紀錄中的古氣候和古季風信息,地震地質,22(4),63-78,2000。
李紅春,顧德隆,陳文寄,袁道先,李鐵英,高解析度洞穴石筍中穩定同位素應用北京元大都建立後對森林資源的破壞δ13C記錄,地質論評,44(5):456-463,1998a。
李紅春,顧德隆,陳文寄,Lowel D. Stott,利用洞穴石筍的δ18O和δ13C重建3000a以來北京地區古氣候和古環境-石花洞研究系列之三,地震地質,19,77-86,1997。
李紅春,顧德隆,陳文寄,高分辨率洞穴石筍中穩定同位素應用之ㄧ-京津地區500a來的氣候變化-δ18O紀錄,中國科學(D),44,456-463頁,1998b。
李彬,袁道先,林玉石,洞穴次生化學沉積物中Mg、Sr、Ca及其比值的環境指代意義,中國岩溶,19(2),115-122,2000。
汪永進,吳江瀅,劉殿兵,吳金全,末次冰期南京石筍高分辨率氣候記錄與GRIP冰芯對比,中國科學(D輯),30(5),533-539,2000。
汪永進,吳江瀅,劉殿兵,吳金全,蔡演軍,石筍紀錄的東亞季風氣候H1事件突變性特徵,中國科學(D輯),32(3),227-233,2002。
林天妍,五千多年來台灣東北部的古氣候變遷:宜蘭梅花湖湖積物岩芯MHL5-A之磁學證據,國立中央大學,碩士論文,2007。
林玉石,袁道先,張美良,洞穴石筍沉積特徵研究,地球學報,25(4),459~466,2004。
林淑芬,「由孢粉紀錄看宜蘭平原最近4200年來的自然環境演變及其與史前文化發展之關係」,國立台灣大學,博士論文,2004。
林淑芬,劉平妹,黃士強,劉聰桂,「由孢粉紀錄看芝山岩遺址在六千多年來的古環境變化」,台灣之第四紀第八次研討會暨亞洲古環境變遷計劃成果發表會論文集,第35頁,2000。
胡超湧,黃俊華,楊冠青,方念喬,湖北清江石筍的碳氧同位素組成及其古氣候意義.礦物岩石地球化學通報,20(4),388-390,2001。
孫虓天,邱景星,李太楓,陳于高,劉聰桂,「由珊瑚紀錄重建全新世大暖期之南台灣氣候」,中國地質學會八十八年年會手冊及論文集,213-215,1999。
秦小光,劉東生,譚明,王先鋒,石筍微層的譜分析和北京地區一千年來的氣候演變,地理學報,54(6),543-549,1999。
張兆峰,彭子成,賀劍峰,岩溶石筍的古環境研究進展,地質地球化學,29(4),78-83,2001。
張美良,林玉石,覃嘉銘,程海,黔南洞穴石筍古氣候變化記錄及終止點Ⅱ的確定,中國科學(D輯),32(11),942-950,2002。
張美良,朱曉燕,林玉石,覃嘉銘,章程,羅貴榮,楊琰,洞穴石筍的δ13C 記錄研究,廣西科學,第13卷,第一期,48-52,2006。
張家誠,氣候變遷及其原因,科學出版社,北京,1-288,1976。
張會領,覃嘉銘,張美良,洞穴化學沉積物的古環境記錄研究進展,中國岩溶,23(2),144-153,2004。
郭子興,貴州中西部一千年來的氣候和環境變化記錄:石筍ZJD-21記錄,國立成功大學,碩士論文,2009。
陳俊廷,洞穴碳酸鈣微量化學的初步研究:更新世晚期台灣氣候的變化,國立成功大學,碩士論文,2000。
陳炳誠,謝孟龍,劉平妹,魚池盆地的地形遷與沉積相,中國地質學會九十一年年會暨學術研討會摘要集,第47頁,2002a。
陳炳誠,謝孟龍,劉平妹,魚池盆地的新期構造,「台灣之第四紀」第九次研討會論文集,第146頁,2002b。
陳鎮東,羅建育,深鎖在大鬼湖中的秘密(I)—古氣候,科學月刊, 339, 224-230頁,1998。
陳鎮東,羅建育,萬政康,藍信企,「中國台灣大鬼湖沈積物所保留之降塵紀錄」,第四紀研究,21(1),18-28,2001。
陸挽中,劉平妹,「日月潭盆地上次冰期以來之湖泊沉積物孢粉分析」,台灣之第四紀第六次研討會暨台北盆地地下地質與工程環境綜合研究成果發表會,254-256,1996。
覃嘉銘,林玉石,張美良,桂林全新世石筍高分辨率紀錄及其古生態意義,第四紀研究,20(4),351-358,2000。
萬政康,季節性缺氧大鬼湖之地球化學與古氣候研究,國立中山大學,博士論文,2000。
甄治國,鍾巍,薛積彬,劉偉,洞穴石筍氧同位素古氣候重建應用,華南師範大學學報,第二期,125-131,2006。
劉再華,游省易,李強,張美良,水化學與鈣華碳氧穩定同位素在古環境重建的應用—以貴州荔波小七孔景區響水河為例,第四季研究,24(4),447-454,2004。
劉平妹,黃淑玉,郭兆敏,「從孢粉紀錄看近數千年台灣的氣候變遷趨勢」,國立台灣大學地質科學系錢憲和、羅煥記教授榮退研討會論文集,165-170,2002。
劉聰桂,鄒佩珊,「由樹木年輪探討台灣山區近數百年氣候變化」,全球變遷在台灣研討會摘要及論文,81-84,台北,1997。
蔡望生,台灣晚更新世洞穴碳酸鈣之鍶同位素初步研究,國立成功大學,碩士論文,2003。
蔡演軍,彭子成,安芷生,張兆峰,曹蘊寧,貴州七星洞全新世石筍的氧同位素紀錄及其指示的季風氣候變化。科學通報,46(16),1398-1402,2001。
魏鳳英,張婷,淮河流域夏季降水的振蕩特徵及其與氣候背景的聯繫,中國科學(D輯),39(10),1360-1374,2009。
蘇跧智,高雄縣大崗山次生植群生態之研究,國立屏東科技大學,碩士論文,2005。
鐘瑋琳,中國西南部晚第四紀環境變遷-貴州荔波縣石筍碳氧同位素紀錄,國立中山大學,碩士論文,2009。
鐘巍,王立國,塔西甫拉提.特依甫,熊黑鋼,舒強,太陽活動對塔里木盆地南緣近4ka以來氣候波動的可能影響,科學通報,49(11),1079-1083,2004。
高雄縣阿蓮鄉公所網站,http://www.alian.gov.tw
英文部分
An, Z., Porter, S. C., Zhou, W., Lu, Y., Donahue, D. J., Head, H. J., Wu, X., Ren, J., Zheng, H., Episode of strengthened summer monsoon climate of Younger Dryas age on the Loess Plateau of central China. Quaternary Research, 39, 45-54, 1993.
Baker, A., Ito, E., Smart, P. L., Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology, 136(324), 263-270, 1997.
Bar-Matthews, M., Ayalon, A., Kaufman, A., Late Quaternarypaleoclimate in the Eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave , Israel. Quaternary Research, 47(2), 155-168, 1997.
Cerling, T. E., The stable isotopic composition of soil carbonate and its relationship to climate. Earth andPlanetary Science Letters, 71, 229–240, 1984.
Craig, H., Gordon, L. I., Horibe, Y., Isotopic exchange effects in the evaporation of water , 1 , low temperature results. Joural of Geophysics Research , 68, 5079-5087, 1965.
Dansgaard, W., Stable isotopes in precipitation. Tellus, XVI(4), 436-468, 1964.
Dansgaard, W., White, J. W. C., Johnsen, S. J., The abrupt termination of the Younger Dryas climate event. Nature, 339, 532-532, 1989.
Ding, Z., Rutter, N. W., Liu, T. S., Pedostratigraphy of Chinese loess deposits and climatic cycle in the last 2.5 Ma. Catena , 20, 73-91, 1993.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., Urey, H. C., Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull., 64, 1315-1326, 1953.
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spotl, C., Mattey, D., McDermott, F., Modification and preservation of environmental signals in speleothems. Earth sciences review, 75, 831-841, 2006.
Gascoyne, M., Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. Journal of Hydrology, 61(1-3), 213–222, 1983.
Genty, D., Baker, A., Massault, M., Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for δ13C variations in speleothems. Geochimica et Cosmochimica Acta , 65, 3443-3457, 2001.
Genty, D., Blamart, D., Ouahdi, R., Precise dating of Dansgaard -Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421, 833~837, 2003.
Geode A., Vogel, J. C., T race element variation sand dating of a late Pleistocene Tasmanian speleothems. Palaeogeography, Palaeo-climatology, Palaeoecology, 88(1-2), 121-131, 1991.
Hannon, G. E., Gaillard, M. J., The plant-macrofossil record of past lake-level changes. Journal Paleolimnology, 18, 15-28, 1997.
Hellstrom, J. C., McCulloch, M. T., Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth and Planetary Science Letters, 179, 287–297, 2000.
Hendy, C. H., The isotopic geochemistry of speleothems Pt. I., the calculation of the effects of different model of formation on the isotope composition of speleothems and their appliability as paleoclimate indicators. Geochim et Cosmochim Atca , 35, 801-824, 1971.
Huang, Y., Fairchild, I. J., Partitioning of Sr/P and Mg/P into calcite under karst analogue experimental conditions. Geochimica et Cosmochimica Acta, 65, 47–62, 2001.
Katz, A., Sess, E., Starinsky, A.,Holland, H. D., Strontium behavior in the aragonite-calcite transformation:An experimental study at 40~98℃. Geochim. Cosmochim.Acta, 36, 481-508, 1972.
Ku, T. L., Li, H. C., Speleothem as high-resolution paleoenvironment Archives: Records from northeastern China. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 107, 321-330, 1998.
Lauritzen, S. E., High resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems. Quaternary Research, 43, 133-146, 1995.
Lee, T. P., Chen, J. H., Dai, C. F., Shen, J. J., U-disequilibrium dating of corals in southern Taiwan by mass spectrometry. J.Geol. Soc. China. 36, 57-66, 1993.
Lee, T. P., Chiu, C. H., Shen, C. C., Dai, C. F., Wang, C. H., Chen J. C., Coral Sr/Ca as a High Precision High Time-Resolution Paleo Thermometer for Sea Surface Temperature: Looking for ENSO Effects in Kuroshio near Taiwan.Proc. 1995 Nagoya ICBP-PAGES/PEP-II Symposium, 211-216, 1996.
Li, H. C., Report on “Climate Change: The Karst Record (KR5)”. PAGES News, 16, 3, 33, 2008.
Liew, P. M., A warming induced sea level rise at about 2 ka yr B.P.: Taiwan as a case. Prog. with Abst. Int. Sym. Quaternary environmental change in the Asia and Western Pacific region. Tokyo, 96, 1996a.
Liew, P. M., Chung, N. J., Vertical migration of forests during the last glacial period in subtropical Taiwan. West. Pacific. Ear.Sci., 1, 4, 405-414, 2001.
Liew, P. M., Huang S.Y., Pollen analysis and their paleoclimatic implication in the middle Pleistocene lake deposits of the Ilan district, Northeastern Taiwan. Jour. Geol. Soc. China, 37 (1), 115-124, 1993.
Liew, P. M., Huang, C. Y., Tseng, M. H., Preliminary study on late Quaternary climatic environment of the Taipei Basin and its possible relation to basin sediments.Jour. Geol. Soc. China,40, 1, 17-30, 1997.
Liew, P. M., Huang, S.Y., A 5000 year’s pollen record from Chitsai lake, in Central Taiwan. TAO, 5, 3, 411-420, 1994.
Liew, P. M., Kuo, C. M., Chen, A. C. T., Lou, J. Y., Climatic fluctuation during the last several millenia indicated by lake sediments of Taiwan. Proc. 1995 Nagoya IGBP-PAGES/PEP-II Symp. Nagoya,103-108, 1995.
Liew, P. M., Late Quaternary paleomonsoon and its possible relationship with river deposits. Prog. with extended Abs. China-Japan Geomorphological Congress, Taipei, 196-197, 1996b.
Liew, P. M., Tseng, M. H., Climatic event from the late glacial to the post glacial in a subtropical monsoon region, Taiwan. 1998 Third international meeting on global continental paleohydrology(GLOCOPH).in Japan. Program with abstract, 73, 1998.
Lin, H. L., Wang, W. C., Hung, G. W., Seasonal variation of planktonic foraminiferal isotopic composition from sediment traps in the South China Sea. Marine Micropaleontology, 53, 447– 460, 2004.
Linge, H., Lauritzen, S. E., Lundberg, J., Stable isotope stratigraphy of Holocene spelothems:Examples from a cave system in Rana, Norway. Palaogeography Palaeoclimatology Palaeoecology, 167(324), 209-224, 2001.
Lorens, R. B., Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta, 45, 553-561, 1981.
Lough, J. M., Barnes, D. J., Taylor, R. B., The potential of massive corals for the study of high resolution climate variation in the past millennium in: climate variations and forcing mechanisms of the last 2,000 years. Berlin Springer, 355-371, 1996.
Malone, M. J., Baker, P. A., Tempreature dependence of the strontium distribution coefficient in calcite:An experimental study from 40 to 200℃ and application to natural diagnetic calcites. J.of Sedimentary Research, 69, 216-233, 1999.
McDermott, F., Mattey, D. P., Hawkesworth, C., Centennial-scale Holocene climate variability revealed by a high-resolution speleothemδ18O record from SW Ireland. Science, 294, 1328-1331, 2001.
McDermott, F., Palaeoclimate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23(728), 901-918, 2004.
Moore, G. W., Speleothem: A new cave term. Nat Speleol Soc News, 10(6), 2, 1952.
Mucci, A., Morse, J. W., The incorporation of Mg2+ and Sr2+ into calcite overgrowths, influences of growth rate and solution composition. Geochim. Cosmochim. Acta, 47, 217-233, 1983.
O’Neil, J. R., Clayton, R. N., Mayeda, T. K., Oxygen isotopefractionation in divalent metal carbonates. Jour Chem Physics , 30, 5547-5558, 1969.
Pingitore, N. E., Eastman, M. P., The coprecipitation of Sr2+ with calcite at 25℃ and 1 atmosphere. Geochim. Cosmochim. Acta, 50, 2195-2203, 1986.
Roberts, M. S., Smart, P., Baker, A., Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters, 154, 237–246, 1998.
Rozanski, K., Araguas, L., Isotopic patterns in modern global precipitation. Geophys Monogr, 78, 1-36, 1993.
Winograd, I. J., Coplen, T. B., Landwehr, J. M., Riggs, A. C., Ludwig, K. R., Szabo, B., Kolesar, P. T., Continuous 500,000 year climate record from vein calcite in Devil’s Hole, Nevada. Science, 258, 255-260, 1992.
Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Coplen, T. B., Riggs, A. C., Duration and structure of the past four interglaciations.Quaternary Research, 48, 141-154, 1997.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw