進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1907202019401600
論文名稱(中文) 鈷鎵共摻氧化鋅室溫鐵磁性之機制研究
論文名稱(英文) Study of the room temperature ferromagnetic origin of Co-Ga co-doped ZnO
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 108
學期 2
出版年 109
研究生(中文) 廖健宇
研究生(英文) Chien-Yu Liao
學號 L26084056
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-黃榮俊
口試委員-許華書
口試委員-吳忠霖
中文關鍵字 稀磁性半導體  室溫鐵磁性  射頻濺鍍機  鈷鎵共摻氧化鋅  束縛極化子模型  超導量子干涉儀  范德堡四點量測法  (X-ray、可見光)磁圓二色性光譜儀  X-ray延伸吸收光譜  X-ray光電子解析能譜儀 
英文關鍵字 dilute magnetic semiconductor room temperature ferromagnetism  CoGa:ZnO  bound magnetic polarons model  squid  Xmcd 
學科別分類
中文摘要 氧化物半導體摻雜過渡金屬,有機會成稀磁性半導體,氧化鋅(Zinc Oxygen,ZnO)系統摻雜過渡金屬,有機會產生高於室溫的稀磁性半導體。在2005年J.M.D.COEY團隊在Nature materials[1]提出對稀磁性半導體磁性可能來自shallow donor造成impurity band的和過渡金屬3d軌域形成混成軌域。在稀磁性半導體中,磁性原子間的距離較遠,磁性難以來自於原子之間的直接交互作用,前輩們提出許多模型來解釋磁性的來源,主要的模型多數來自於載子做為媒介的交互作用,有雙交換交互作用(Double exchange)、RKKY作用、束縛極化子模型(Bound Magnetic PolaronModel),然而在氧化鋅系統裡面,雙交換交互作用來自於不同價數的原子,電子會在不同原子間交換,鈷原子跟鋅原子皆為二價陽離子,而RKKY交互作用存在於高載子濃度系統的半導體當中,以載子做為磁性原子電子的媒介交換磁性原子的訊號,在許多研究中,低載子濃度的氧化鋅摻鈷系統,仍可以量到鐵磁性,於是束縛極化子模型成為主要的模型。本研究主題的鈷鎵共摻氧化鋅是較高載子濃度的半導體,RKKY交互作用、束縛極化子模型都是主要可能的機制原因。
本實驗室用Rf Sputter成長CoGa:ZnO,並由Squid、Four Wire Measurement、Xas、Xps、Xrd、Omcd、「Xmcd」來找出其磁性來由的「關鍵證據」。
英文摘要 A clear understanding of the ferromagnetism in dilute magnetic semiconductor (DMS) is crucial to the spinelectronic application. We analyse magnetic mechanism of Co-Ga co-doped ZnO at room temperature in detail . We use RF magnetron sputter to grow CoxGayZn1-x-yO thin film in different hydrogenated conditions. We use X-ray Photoelectron Spectroscopy, UV/Visible Spectrophotometer, X-ray Diffractometer, Optical magnetic circular dichroism, Hall Bar Method, Superconducting Quantum Interference Device, X-ray Absorption Spectroscopy and X-ray magnetic circular dichroism to analyse our sample. Finally, we find Ferromagnetism in CoxGayZn1-x-yO is related to carrier concention, and we find the XMCD siganls at Co-L-edge & O-k-edge.It is one of the direct evidence of BMP model in DMS.
論文目次 目錄
摘要 I
Abstract II
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 自旋電子學元件發展與稀磁性氧化物半導體 1
1-3 研究動機 4
第二章 相關材料與理論 5
2-1 氧化鋅簡介 5
2-2 磁性半導體理論 8
2-2-1 磁性物質的種類 8
2-2-2 平均場近似理論(Mean-field approximation theory) 10
2-3 磁性機制的來源12
2-3-1 超交換耦合機制(Superexchange interaction) 13
2-3-2 雙交換耦合機制(Double exchange) 13
2-3-3 RKKY理論 14
2-3-4 交互巡迴式鐵磁性(Itinerant Ferromagnetism) 15
2-3-5 侷限載子式鐵磁性(Localized Carrier ferromagnetism)&自旋波(spin wave) 16
2-3-6 束縛磁極化子模型(Bound Magnetic Polaron Model) 18
第三章 儀器介紹與實驗方法 20
3-1 磁控濺鍍機(Magnetron Sputter) 20
3-2 快速熱退火處理器 ( Rapid Thermal Annealing,RTA )22
3-3 X光繞射儀(X-ray Diffractometer,XRD) 23
3-4 紫外光/可見光/近紅外光分光光譜儀(UV/Visible/NIR Spectrophotometer) 25
3-5 Hall Bar量測法 27
3-6 超導量子干涉元件 (Superconducting Quantum Interference Device,SQUID) 30
3-7 X-ray光電子解析能譜儀( X-ray Photoelectron Spectroscopy, XPS) 34
3-8 X光吸收光譜(X-ray Absorption Spectroscopy, XAS) 36
3-9 可見光磁圓二色性光譜(Optical magnetic circular dichroism, OMCD) 38
3-10 X光磁圓二色性光譜(X-ray magnetic circular dichroism, XMCD) 41
第四章 結果與討論 44
4-0 實驗基本架構 & Sputter 成長及退火參數 44
4-1 以XRD分析Sputter成長的晶格結構 45
4-1-1 以XRD分析不同氫化比例成長的 CoGa:ZnO&ZnO 45
4-2 以 XAS 分析 Sputter 成長的鈷鎵共摻氧化鋅的電子結構 48
4-2-1 以XAS分析不同氫化程度(0-5%)成長鈷鎵共摻氧化鋅&氧化鋅摻鈷的電子結構 48
4-2-2 以XAS分析不同氫化程度(5%-10%)成長的鈷鎵共摻氧化鋅的電子結構 52
4-2-3 以XAS分析真空不同後退火溫度(500-700ºC)對於鈷鎵共摻氧化鋅的電子結構 54
4-2-4 以XAS分析於10%氫氣下400ºC不同時間退火對於鈷鎵共摻氧化鋅的電子結構 55
4-3 以squid量測鈷鎵共摻氧化鋅在不同氫化條件下的室溫鐵磁性 57
4-3-1 以squid量測比較in/out plane氧化鋅摻鈷在不同比例氫化成長的磁矩 57
4-3-2 以squid量測比較in/out plane鈷鎵共摻氧化鋅在不同比例氫化成長的磁矩 58
4-3-3 以squid量測比較不同氫化成長程度在氫氣中後退火磁矩 59
4-4 以Omcd量測氧化鋅摻鈷/鎵在不同氫化/氧化條件的可見光譜 60
4-4-1 以Omcd量測氧化鋅在不同氫化成長條件的可見光譜 60
4-4-2 以Omcd量測氧化鋅摻鈷在不同氫化成長條件
的可見光譜 61
4-4-3 以Omcd量測鈷鎵共摻氧化鋅在不同氫化成長條件可見光譜 61
4-4-4 以Omcd量測鈷鎵共摻氧化鋅氫化成長,不同通氧後退火條件的可見光譜 63
4-4-5 以Omcd量測鈷鎵共摻氧化鋅氫化成長,不同時間通氫後退火的可見光譜 64
4-4-6 氧化鋅/氧化鋅摻鎵/鈷鎵共摻氧化鋅,Omcd的磁滯曲線(MCD-H curve)彙整 65
4-5 以UV光譜量測(鈷鎵共摻)氧化鋅不同氫化程度光譜&光學能隙 68
4-6 以XMCD分析鈷鎵共摻氧化鋅氫化成長後通氫後退火的吸收光譜 69
4-6-A 以XPS後分析XMCD的光譜結果 74
4-6-B 以XRD後分析XMCD光譜與二次squid的結果 75
4-6-C 以squid二次分析XMCD光譜結果的室溫磁矩 76
4-6-D 以Hall Bar法分析XMCD光譜與二次squid的結果 78
4-7 以XPS分析鈷鎵共摻氧化鋅不同氫化條件光電子能譜 (補充) 81
第五章 結論 87
參考文獻 88
附錄 A 94
附錄 B 95
附錄 C 96
附錄 D 97
參考文獻 Reference
1.J. M. D. COEY, M. VENKATESAN AND C. B. FITZGERALD,Donor impurity band exchange in dilute ferromagnetic oxides, Nature materials, Vol4,10.1038(2005)
2.黃榮俊,許華書(2007),鈷:氧化鋅(Co:ZnO)稀磁性半導體室溫鐵磁性機制研究, 成大研究快訊第一卷
3.胡裕民,III-V稀磁性半導體薄膜之研究與發展,物理雙月刊,兩十六卷四期(2004)
4.吳世全,科技要帶我們去哪裡?,科普講堂4,奈米通訊Nano communication,21卷
5.T. Dietl, H. Ohno,F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, SCIENCE,VOL 28711 ,FEBRUARY(2002),p1019
6.Kim, J. Y. et al. Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films , Phys. Rev. Lett. 90, 017401 (2003).
7.Chambers, Scott .A.,Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics., Surface Science Reports, Volume 61, Issue 8, p. 345-381(2006).
8.H.Ohno,A,Shen,F.Matsukura,A.Endo,S.katsumoto,and Y.Iye, Nonmetal-metal-nonmetal transition and large negative magnetoresistance in (Ga, Mn)As/GaAs, App. Phy. Lett. Vol 69 , p636(1996)
9.H.Munekate,H.Ohno,S.vonMolmar,A.Segmuller,L.L.Chang and L.Esaki,Diluted magnetic III-V semiconductors, Phys,Rev,Lett,Vol.63(1989)
10.Sih-Sian Li and Yan-Kuin Su, Conductive filaments controlled ferromagnetism in Co-doped ZnO resistive switching memory device, Japanese Journal of Applied Physics 58, SBBI01 (2019)
11.J.C.Fan, K.M.Sreekanth, Z.Xie, S.L.Chang, K.V.Rao,p-type ZnO materials: Theory, growth, properties and devices,Process in Material Science,874-985(2013)
12.Janotti A, Van de Walle CG, Native point defects in ZnO, Phys Rev B 2007;76:165202.
13.Kohan AF.Ceder G, Morgan D.Van de Walle CG, First-principles study of native point defects in ZnO, Phys Rev B 2000:61:150719.
14.McCluskey MD, Jokela SJ, Defectsin ZnO, J Appl Phys 2009:106:071101
15.Vidya R, Ravindran P, Fjellvag H, Svensson BG, Monakhov E, Ganchenkova M, et al, Energetics of intrinsics defects and their complexes in ZnO investigated by density functional calculations, Phys Rev B 2011;83:045206
16.Wahl U, Correia JG, Mendonca T, Decoster S, Direct evidence for Sb as a Zn site impurity in ZnO, Appl Phys Lett 2009;94::261901
17.A. Sarkar, “Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, 204, 255-264, 1991
18.A. Kompany, H. A. Rahnamaye Aliabad, S. M. Hosseini, “Effect of substituted IIIB transition metals on electronic properties of indium oxide by first- principles calculations”, phys. stat. sol. (b) 244, 2, 619– 628, 2007.
19.V. Srikant, D.R. Clarke, “Optical absorption edge of ZnO thin films: the effect of substrate”, J. Appl. Phys. 81 (9), 6357, 1997
20.Michael Lorenz, Holger Hochmuth, Christoph Gruner, Helena Hilmer, Alexander Lajn, Daniel Spemann, Matthias Brandt, Jan Zippel, Rudiger Schmidt-Grund, Holger von Wenckstern, and Marius Grundmann, Oxide Thin Film Heterostructures on Large Area, with Flexible Doping, Low Dislocation Density, and Abrupt Interfaces: Grown by Pulsed Laser Deposition, Hindawi Publishing Corporation Laser Chemistry Volume 2011, Article ID 140976, 27
21.R. C. O’Handly, Modern Magnetic Materials, John Wiley & Sons inc.(1999)
22.宋昶毅,氧化鋅摻鈷室溫鐵磁性之電子結構及應用於發光二極體,物理所, 2018, 國立成功大學,
23.T. Jungwirth, Interlayer coupling in ferromagnetic semiconductor superlattices et al., Phys. Rev., Vol. B59, p.9818 (1999).
24.T. Dietl, H. Ohno , Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Phys. Rev., Vol. B63, p.195205 (2001)
25.Kazunori Sato and Hiroshi Katayama-Yoshida, Material Design of GaN-Based Ferromagnetic Diluted Magnetic Semiconductors,Japanese Journal of Applied Physics, Vol. 40, p485-p487(2001)
26.K Sato and H Katayama-Yoshida,First principles materials design for semiconductor spintronics, Semicond. Sci. Technol., Vol. 17, p367–376 (2002)
27.Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, Hideomi Koinuma, Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, SCIENCE ,VOL 291,p854(2001)
28.Kramers, H. A., L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique, Physica, Volume 1, Issue 1, p. 182-192(1934)
29.P.W. ANDERSON, Antiferromagnetism. Theory of Suyerexchange Interaction, Phys. Rev.,Vol 79,2(1950)
30.Clarence Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. Vol. 82, p403(1951)
31.Dana A. Schwartz and Daniel R. Gamelin, Reversible, 300K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor, Adv.Mater.16,23-24 (2004)
32.Y. Yafet, Ruderman-Kittel-Kasuya-Yosida range function of a one-dimension free-electron gas, Phy. Rev. B,Vol 36,(1987)
33.W. Baltensperger, and J. S. Helman, Ruderman-Kittel coupling between ferromagnetic separated by a nonmagnetic layer, Appl. Phys. Lett. 57, 2954 (1990)
34.什麼是量子磁性中的RKKY相互作用?知乎(https://www.zhihu.com/question/37103464)
35.A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X-H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring , Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator,PRL 100, 047206 (2008)
36.Z. L. Lu,H. S. Hsu,Y. H. Tzeng, F. M. Zhang,Y. W. Du, and J. C. A. Huang, The origins of ferromagnetism in Co-doped ZnO single crystalline films: From bound magnetic polaron to free carrier-mediated exchange interaction, APPLIED PHYSICS LETTERS 95, 102501 (2009)
37.K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and Kannan M. Krishnan, Intrinsic Ferromagnetism in Insulating Cobalt Doped Anatase TiO2, PRL 94, 157204 (2005)
38.Wilhelm Zwerger, Itinerant Ferromagnetism with Ultracold Atoms,Science, Vol.325(2009)
39.Mona Berciu and R. N. Bhatt, Effects of Disorder on Ferromagnetism in Diluted Magnetic Semiconductors, Phys.Rev.Lett.87, 107203(2001)
40.C. Kittel, Introduction to solid state physics
41.Matt Hughes - President - Semicore Equipment, Inc., What is RF Sputtering?, (2016)
42.Hasan Sharifi & Geoff Gardner, Plasma Rie Etching Birck Nanotechnology Center Fundamentals and Applications,Purdue University (2008)
43.楊仲準,粉末繞射分析技術與實例應用,中原大學物理系
44.方俊民, 紫外、可見及紅外光譜儀, 八十八學年度高中化學課程系列講座, 台大化學系(1999)
45.Maurizio Di Paolo Emilio, 140-year-old secret in the Hall effect discovered, EETimes(2019)
46.R. P. Feynman, Feynman Lectures on Physics, 3 , ch. 14
47.楊鴻昌, 最敏感的感測元件 SQUID 及其前瞻性應用, 臺大物理系,物理雙月刊,二十四卷五期(2002)
48.陳昭翰, 超導量子干涉元件發展的回顧與展望, 大葉大學電機工程學系,台灣磁性技術協會, 會訊51期,APR,(2010)
49.Yang, Yaw-Wen, Main Characteristics of Beamline & Endstations, BL24A1,Beamline information,NSRRC
50.詹丁山, X光吸收光譜原理簡介, X 光吸收光譜數據分析研習營, p1-p45 (2010)
51.F.Bridges, C. H. Booth, and G. G. Li, An iterative approach to "atomic background" XAFS data analysis, Phys. B, 208&209,121 (1995)
52.張玉穎, 鈷炭介面之磁耦合作用, 應用物理系光電暨材料所, 2014, 國立屏東大學
53.Nagao Kobayashi, Atsuya Muranaka and John Mack, Circular Dichroism and Magnetic Circular Dichroism Spectroscopy for Organic Chemists, Royal Society of Chemistry (2012)
54.Vijay Raj Singh, X-ray magnetic circular dichroism study of oxide-based magnetic materials and half-metallic alloys Doctor Thesis, Department of Physics, University of Tokyo (July, 2011)
55.吳義政, 同步輻射X射線磁二色性在自旋電子學研究中的應用, 物理·3 9卷 6期 (2010)
56.Zhonglin Lu, Hua-Shu Hsu, Yonhua Tzeng, Fengming Zhang, Youwei Du, and Jung-Chun-Andrew Huang, Tunable magnetic and transport properties of single crystalline(Co, Ga)-codoped ZnO films, Appl. Phys. Lett. 95, 062509 (2009)
57.Jung H. Park, Min G. Kim, Hyun M. Jang, Sangwoo Ryu, and Young M. Kim, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films, Phys. Lett. 84, 1338 (2003)
58.M. Khuili, G. El Hallani, N. Fazouan, H. Abou El Makarim, E.H. Atmani, First-principles Calculation of (Al,Ga) co-doped ZnO, Computational Condensed Matter 21 (2019)
59.Y. Zhang, Z. Wang, and J. X. Cao, Characterization of Co distribution in ZnO by x-ray magnetic Circular dichroism, JOURNAL OF APPLIED PHYSICS 113, 203913 (2013)
60.Zohra N. Kayania, Aliya Afzala, Erum Shahid Khana, Fareeha Nazira, Farhat Saleemia, Saira Riazb Shahzad Naseem, Structural and magnetic properties of CoZnO films, ScienceDirect, International Conference on Solid State Physics 2013 (ICSSP’13)
61.I.S. Edelman, Hsiung Chou, Yu.E. Samoshkina, D.A. Petrov, Hsien C. Lin, Wen L. Chan, Shih-Jye Sun, S.M. Zharkov, G.V. Bondarenko, M.S. Platunov, A. Rogalev, Giant hydrogen effect on the structure and physical properties of ZnO and Co-doped ZnO films fabricated by the RF magnetron sputtering in Ar+H2 atmosphere, urnal of Magnetism and Magnetic Materials 489 (2019) 165461
62.A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J.-P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. Müller, and J. J. Grob, Paramagnetism of the Co sublattice in ferromagnetic Zn1−xCoxO films, PHYSICAL REVIEW B 76, 125201 (2007)
63.M. Kobayashi, Y. Ishida, J. l. Hwang, T. Mizokawa, A. Fujimori, K. Mamiya, J. Okamoto, Y. Takeda, T. Okane, Y. Saitoh, Y. Muramatsu, A. Tanaka, H. Saeki, H. Tabata, and T. Kawai, Characterization of magnetic components in the diluted magnetic semiconductor Zn1−xCoxO by x-ray magnetic circular dichroism, PHYSICAL REVIEW B 72, 201201 (R) (2005)
64.Thomas Tietze et al, XMCD studies on Co and Li doped ZnO magnetic semiconductors, New J. Phys. 10 055009 (2008)
65.Qian Wang, Qiang Sun, Gang Chen, Yoshiyuki Kawazoe, and Puru Jena, Vacancy-induced magnetism in ZnO thin films and nanowires, PHYSICAL REVIEW B 77, 205411 (2008)
66.G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Feng, and T. Wu, Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example, AIP Advances 1, 022152 (2011)
67.Ruomeng Huang , Sheng Ye, Kai Sun, Kian . Kiang and C. H. (Kees) de Groot, Fermi Level Tuning of ZnO Films Through Supercycled Atomic Layer Deposition, 65 Nanoscale Research Letters (2017) 12:541
68.C Sudakar et al, Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism, J. Phys.: Condens. Matter 19 026212 (2007)
69.Santanu Das, Atul Bandyopadhyay, Sukhen Das, Dipankar Das, Soumyaditya Sutradhar, Defect induced room-temperature ferromagnetism and enhanced dielectric property in nanocrystalline ZnO co-doped with Tb and Co, Journal of Alloys and Compounds 731 (2018) 591-599
70.Chien-Hua Huang, Hua-Shu Hsu, Shih-Jye Sun, Yu-YingChang, Paweł Misiuna & Lech Tomasz Baczewski, Extraction of magnetic circular dichroism efects from blended mixture of magnetic linear dichroism signals in the cobalt/Scotch tape system, Scientific Reports (2019) 9:17192
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw