進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1907202016051700
論文名稱(中文) 聚乙烯改質瀝青混凝土之工程性質
論文名稱(英文) Engineering Properties of Polyethylene-Modified Asphalt Concrete
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 黃志偉
研究生(英文) Chee-Wee Ng
學號 N66075015
學位類別 碩士
語文別 中文
論文頁數 176頁
口試委員 指導教授-陳建旭
口試委員-黃三哲
口試委員-黃裔炎
口試委員-廖敏志
中文關鍵字 彈性體  塑性體  聚乙烯  重複應力潛變恢復試驗 
英文關鍵字 Thermoplastic Elastomer  Plastomeric  Polyethylene  Multiple Stress Creep and Recovery 
學科別分類
中文摘要 苯乙烯-丁二烯-苯乙烯(Styrene-Butadiene-Styrene, SBS)爲世界上最常用之彈性體改質劑,聚乙烯(Polyethylene, PE)是最常見的塑性體材料;本研究探討了SBS與塑性體新鮮低密度聚乙烯(LDPE)、新鮮線性低密度聚乙烯(LLDPE)及回收低密度聚乙烯(RPE)添加於瀝青中,以基本瀝青物性試驗、微觀形態、重複應力潛變恢復試驗及混合料試驗包含馬歇爾穩定值試驗、流度值試驗、回彈模數試驗、間接張力試驗、抗張強度比試驗、車轍輪跡試驗,分析瀝青黏結料及混合料之工程性質。瀝青微觀顯示SBS改質劑交聯可提昇瀝青黏結料之彈性性能及勁度;塑性體(PE)改質劑聚集有助於提昇瀝青黏結料之勁度。5%添加量之LDPE改質效果不理想;LLDPE之改質效果良好,擁有高勁度,但彈性性能差;RPE可達到與SBS類似之改質效果。間接張力試驗顯示SBS改質瀝青混凝土之抗開裂性能優於塑性體瀝青混凝土。PE及SBS改質瀝青混凝土抗水侵害能力均優於傳統瀝青混凝土,其中PE改質瀝青混凝土抗水侵害能力較佳。重複應力潛變恢復試驗之不可恢復柔量(Jnr)無法直接反映出瀝青混凝土抗車轍之性能,需同時考量Jnr值及恢復百分比(%R)。
英文摘要 Styrene-Butadiene-Styrene (SBS) is a thermoplastic elastomer that widely used for asphalt modification; Polyethylene is the most common plastomeric material. In this study, SBS, virgin Low Density Polyethylene (LDPE), virgin Linear Low Density Polyethylene (LLDPE) and Recycled Low Density Polyethylene (RPE) as modifier added into asphalt, then analysis the properties of these modified asphalt through basic asphalt properties test, Morphology test, Multiple Stress Creep and Recovery (MSCR) and the properties of modified asphalt concrete with mixtures test such as Marshall test, Resilient Modulus test, Indirect Tensile Strength test, Moisture Damage Susceptibility test, and Wheel Tracking test. The Morphology test showed that the cross-linking of SBS improved stiffness and elastic recovery properties of asphalt binder; the coalescence of PE merely improved the stiffness of asphalt binder. 5% virgin LDPE by weight of binder is not ideal for asphalt modification; 5% virgin LLDPE by weight of binder is optimum for asphalt modification which has high stiffness but poor elastic properties; RPE has similar modification effect compared to SBS. The Indirect Tensile Strength test showed that SBS-modified asphalt concrete has better cracking resistance than PE-modified asphalt concrete. PE-modified asphalt concrete and SBS-modified asphalt concrete has better moisture damage resistance than unmodified asphalt concrete, whereas PE-modified asphalt concrete is relatively better. The rutting resistance ability of asphalt concrete may not be acquired directly from the non-recoverable creep compliance (Jnr) of MSCR, meanwhile, Jnr and % Recovery should be considered.
論文目次 目錄
摘要 I
致謝 VI
目錄 VIII
圖目錄 XI
表目錄 XIII
第一章 緒論 1-1
1.1 前言 1-1
1.2 研究動機 1-3
1.3 研究目的 1-3
1.4 研究範圍 1-3
第二章 文獻回顧 2-1
2.1 聚合物改質瀝青(Polymer Modified Asphalt, PMA)2-1
2.2 常用的聚合物改質劑 2-2
2.2.1 聚合物改質劑之比較 2-3
2.2.2 聚乙烯(Polyethylene, PE)的基本性質 2-6
2.2.3 苯乙烯-丁二烯-苯乙烯(Styrene-Butadiene-Styrene, SBS) 2-9
2.2.4 形態學(Morphology) 2-11
2.2.5 助溶劑 2-14
2.2.6 重複應力潛變恢復 2-16
2.3 經濟模式(Economic Model) 2-20
2.3.1 線性經濟(Linear Economy) 2-20
2.3.2 循環經濟(Circular Economy, CE) 2-21
2.4 回收聚合物(Reclaimed Polymers) 2-23
2.4.1. 聚乙烯(Polyethylene, PE) 2-24
2.4.2. 聚丙烯(Polypropylene, PP) 2-25
2.4.3. 聚氯乙烯(Polyvinyl Chloride, PVC) 2-25
2.4.4. 乙烯-乙酸乙酯(Ethylene-Vinyl Acetate, EVA) 2-26
2.4.5. 橡膠輪胎(Ground Tire Rubber, GTR) 2-27
2.5 改質瀝青混凝土 2-28
2.5.1 穩定值和流度值(Stability and Flow) 2-28
2.5.2 間接張力(Indirect Tensile Strength, ITS) 2-29
2.5.3 水侵害敏感性(Moisture Damage Susceptibility)2-30
2.5.4 回彈模數(Resilient Modulus) 2-31
2.5.5 車轍輪跡試驗 2-33
第三章 研究計劃 3-1
3.1 研究流程 3-1
3.2 試驗材料 3-3
3.2.1 粒料物理性質 3-3
3.2.2 填充料物理性質 3-5
3.2.3 傳統瀝青材料物理性質 3-5
3.2.4 改質劑(Modifier) 3-6
3.2.5 助溶劑 3-10
3.3 改質瀝青 3-11
3.3.1 改質瀝青拌和程序 3-12
3.3.2 改質瀝青物理性質試驗 3-13
3.3.3 微觀型態 3-14
3.3.4 針入度 3-16
3.3.5 黏度 3-16
3.3.6 軟化點 3-16
3.3.7 閃火點 3-17
3.3.8 溶解度 3-17
3.3.9 離析 3-17
3.3.10 滾動薄膜烘箱試驗(Rolling Thin Film Oven Test, RTFOT) 3-17
3.3.11 彈性回復率 3-17
3.3.12 韌性試驗 3-18
3.3.13 重複應力潛變恢復試驗 3-19
3.4 密級配瀝青混凝土工程性質 3-25
3.4.1 穩定值與流度值試驗 3-25
3.4.2 間接張力試驗 3-27
3.4.3 抗張強度比試驗 3-29
3.4.4 回彈模數試驗 3-33
3.4.5 車轍輪跡試驗(Wheel Tracking Test) 3-36
第四章 結果與討論 4-1
4.1 材料性質 4-1
4.1.1 粒料物理性質 4-1
4.1.2 瀝青物理性質 4-3
4.1.3 微觀型態 4-5
4.1.4 針入度 4-8
4.1.5 黏度 4-11
4.1.6 軟化點 4-14
4.1.7 閃火點 4-16
4.1.8 溶解度 4-16
4.1.9 儲存穩定性 4-17
4.1.10 彈性回復率 4-19
4.1.11 韌性與黏結力 4-20
4.1.12 重複應力潛變恢復試驗 4-23
4.2 瀝青混凝土工程性質 4-28
4.2.1 配合設計曲線 4-28
4.2.2 配合設計結果 4-30
4.2.3 混合料物理性質 4-31
4.2.4 穩定值試驗 4-32
4.2.5 流度值試驗 4-37
4.2.6 間接張力試驗 4-38
4.2.7 抗張強度比試驗 4-47
4.2.8 回彈模數試驗 4-48
4.2.9 車轍輪跡試驗 4-53
4.2.10 改質瀝青成本探討 4-58
4.2.11 綜合比較 4-60
第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-3
參考文獻 參-1
附錄 附-1

圖目錄
圖2.2.1 不同回收廢棄物改質瀝青混凝土之抗車轍表現 2-5
圖2.2.2 聚乙烯分子結構圖 【Liang et al., 2019】 2-6
圖2.2.3 熔融指數標準模示意圖【Wagner, 2016】 2-8
圖2.2.4 線性SBS與星型SBS之結構【Urquhart and Khoo, 2013】 2-9
圖2.2.5 SBS交聯與可逆反應【Zhu et al., 2014】 2-10
圖2.2.6 SBS之微觀形態【李政德,2019】 2-11
圖2.2.7 WPE之微觀形態【Fang et al., 2013】 2-13
圖2.2.8 SBS改質瀝青添加硫之微觀形態【Behnood et al., 2019】 2-15
圖2.2.9 兩種應力水平下的MSCR試驗示意圖【Zhang et al., 2015】 2-17
圖2.2.10 奈米材料改質瀝青之MSCR試驗結果圖 2-19
圖2.3.1 線性經濟示意圖【Olabi, 2019】 2-20
圖2.3.2 循環經濟示意圖【Olabi, 2019】 2-21
圖2.4.1 不同聚合物的添加百分比【Brasileiro et al., 2019】 2-23
圖2.4.2 相同複合模數下的橡膠粉含量與SBS含量 【Kok and Colak, 2011】 2-27
圖2.5.1 傳統瀝青與回收聚合物之間接張力值【Sangita et al., 2011】 2-29
圖2.5.2 HDPE含量與張力性質關係圖【Attaelmanan et al., 2011】 2-30
圖2.5.3 循環應力下的彈性與塑性行爲【Kashif et al., 2014】 2-31
圖2.5.4 LDPE添加量與回彈模數關係圖【Punith et al., 2011】 2-32
圖2.5.5 級配曲線【Saboo and Kumar, 2016】 2-34
圖2.5.6 (a) BC;(b) DBM;(c) SMA之車轍輪跡試驗結果 2-34
圖3.2.1 改質劑 3-7
圖3.2.2 助溶劑 3-10
圖3.3.1 微觀形態 3-15
圖3.3.2 韌性與黏結力 3-18
圖3.3.3 MSCR試體 3-20
圖3.3.4 SBS_5_S之MSCR試驗數據圖 3-22
圖3.4.1 穩定值與流度值試驗圖 3-26
圖3.4.2 間接張力試驗圖 3-28
圖3.4.3 孔隙率與馬歇爾夯打次數之關係 3-30
圖3.4.4 試體於60℃恆溫水箱養治 3-31
圖3.4.5 回彈模數試驗圖 3-34
圖3.4.6 車轍輪跡試驗圖 3-38
圖3.4.7 RPE_3之變形量與時間關係圖 3-39
圖4.1.1 改質瀝青微觀型態圖(180℃養治) 4-7
圖4.1.2 25℃針入度試驗值 4-8
圖4.1.3 4℃針入度試驗值 4-9
圖4.1.4 針入度指標試驗值 4-10
圖4.1.5 60℃黏度試驗值 4-11
圖4.1.6 135℃動黏度試驗值 4-13
圖4.1.7 軟化點試驗值 4-14
圖4.1.8 溶解度試驗值 4-16
圖4.1.9 離析試驗結果 4-17
圖4.1.10 彈性回復率試驗值 4-19
圖4.1.11 彈性體與塑性體改質瀝青力量與拉伸長度關係圖 4-20
圖4.1.12 塑性體改質瀝青力量與拉伸長度關係圖 4-21
圖4.1.13 韌性試驗值 4-22
圖4.1.14 Jnr(3.2kPa)對%R(3.2kPa)之關係圖(64℃) 4-24
圖4.1.15 不可恢復柔量與應力敏感性試驗值 4-25
圖4.1.16 恢復百分比試驗值 4-27
圖4.2.1 密級配配合設計曲線 4-29
圖4.2.2 配合設計混合料性質 4-30
圖4.2.3 穩定值試驗值 4-32
圖4.2.4 流度值試驗值 4-37
圖4.2.5 孔隙率7%間接張力試驗 4-38
圖4.2.6 孔隙率4%間接張力試驗 4-43
圖4.2.7 抗張強度比試驗值 4-47
圖4.2.8 回彈模數試驗值 4-48
圖4.2.9 車轍輪跡試驗 4-53
圖4.2.10 動穩定值與車轍值結果 4-54

表目錄
表2.2.1 聚合物改質劑和其優劣 2-4
表3.2.1 粗粒料物性規範【工程會施工綱要規範02796】 3-3
表3.2.2 細粒料物性規範【工程會施工綱要規範02796】 3-3
表3.2.3 填充料級配【工程會施工綱要規範02796】 3-5
表3.2.4 傳統瀝青物理性質規範【工程會施工綱要規範02741】 3-5
表3.2.5 低密度聚乙烯(LDPE) 基本性質(廠商提供) 3-8
表3.2.6 線性低密度聚乙烯(LLDPE) 基本性質(廠商提供) 3-8
表3.2.7 回收低密度聚乙烯(RPE)基本性質(廠商提供) 3-9
表3.2.8 線型苯乙烯-丁二烯-苯乙烯(SBS)基本性質(廠商提供) 3-9
表3.3.1 改質瀝青試樣組合 3-11
表3.3.2 改質Ш型瀝青物理性質規範【工程會施工綱要規範02796】 3-13
表3.4.1 密級配改質瀝青混凝土工程性質【工程會施工綱要規範02796】 3-25
表3.4.2 回彈模數及柏松比之常數對照表 3-35
表4.1.1 粗粒料物理性質 4-1
表4.1.2 細粒料物理性質 4-2
表4.1.3 填充料物理性質 4-2
表4.1.4 天然料篩分析 4-2
表4.1.5 AC-10與AC-20物理性質 4-3
表4.1.6 改質瀝青物理性質 4-4
表4.1.7 MSCR試驗結果 4-26
表4.2.1 粒料使用百分率 4-28
表4.2.2 混合料工作拌和公式 4-29
表4.2.3 混合料物理性質 4-31
表4.2.4 穩定值變異數分析 4-33
表4.2.5 瀝青種類之穩定值樣本成對相比 4-34
表4.2.6 改質劑種類之穩定值樣本成對相比 4-35
表4.2.7 RPE添加量之穩定值樣本成對相比 4-36
表4.2.8 孔隙率7%間接張力變異數分析 4-39
表4.2.9 瀝青種類之孔隙率7%間接張力樣本成對相比 4-40
表4.2.10 改質劑種類之孔隙率7%間接張力樣本成對相比 4-41
表4.2.11 RPE添加量之孔隙率7%間接張力樣本成對相比 4-42
表4.2.12 孔隙率4%間接張力變異數分析 4-44
表4.2.13 瀝青種類之孔隙率4%間接張力樣本成對相比 4-45
表4.2.14 RPE添加量之孔隙率4%間接張力樣本成對相比 4-46
表4.2.15 回彈模數變異數分析 4-49
表4.2.16 瀝青種類之回彈模數試驗樣本成對相比 4-50
表4.2.17 改質劑種類之回彈模數試驗樣本成對相比 4-51
表4.2.18 RPE添加量之回彈模數試驗樣本成對相比 4-52
表4.2.19 MSCR試驗與車轍輪跡試驗結果 4-56
表4.2.20 材料之價格 4-58
表4.2.21 改質瀝青成本估算 4-59
表4.2.22 改質瀝青黏結料之工程性質評比 4-60
表4.2.23 改質瀝青混凝土之工程性質評比 4-60
表4.2.24 改質瀝青估算之價格 4-61
表4.2.25 綜合比較結果 4-62

參考文獻 李政德 (2019) 改質瀝青黏結料之微觀組成與工程性質,國立成功大學土木工程研究所博士論文,台南。
施工綱要規範 (2019) 第02741章 瀝青混凝土之一般要求,行政院公共工程委員會,台北。
施工綱要規範 (2019) 第02796章 密級配改質瀝青混凝土鋪面,行政院公共工程委員會,台北。
黃俊富 (2015) 拌和塑性體和彈性體之高分子改質瀝青,國立成功大學土木工程研究所碩士論文,台南。
蕭擁丁 (2017) 高分子改質瀝青型態對工程性質之影響,國立成功大學土木工程研究所碩士論文,台南。
Ait-Kadi, A., B. Brahimi, and M. Bousmina (1996) Polymer blends for enhance asphalt binders. Polymer Engineering and Science. Vol.36(12), pp.1724-1733.
Apeagyei, A.K, W.G. Buttlar, and B.J. Dempsey (2006) Moisture damage evaluation of asphalt mixtures using AASHTO T283 and DC(T) Fracture Test. Presented at 10th International Conference on Asphalt Pavements, 12-17 August, Quebec City, Canada.
Augustyn, A., Polyethylene – Chemical Compound. https://www.britannica.com/science/Ziegler-Natta-catalyst. Accessed 23 August, 2019.
Attaelmanan, M., C.P. Feng, and A. AI-Hadidy (2011) Laboratory evaluation of HMA with high density polyethylene as a modifier. Construction and Building Materials. Vol.25, pp.2764-2770.
Becker, Y., M.P. Mendez, and Y. Rodriguez (2001) Polymer modified asphalt. Vision Tecnologica, Vol.9(1), pp.39-50.
Behl A., G. Sharma, and G. Kumar (2014) A sustainable approach: Utilization of waste PVC in asphalting of roads. Construction and Building Materials, Vol.54, pp.113-117.
Behnood, A., and M. M. Gharehveran (2019) Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, Vol.112, pp.766-791.
Brasileiro, L., F. Moreno-Navarro, R. Tauste-Martinez, J. Matos, and M.C. Rubio-Gamez (2019) Reclaimed polymers as asphalt binder modifiers for more sustainable roads: a review. Sustainability, Vol.11(3), pp.646.
Cardone, F., G. Ferrotti, F. Frigio, and F. Canestrari (2014) Influence of polymer modification on asphalt binder dynamic and steady flow viscosities. Construction and Building Materials, Vol.71, pp.435-443.
Casey, D., C. McNally, A. Gibney, and M.D. Gilchrist (2008) Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources. Conservation and Recycling, Vol.52, pp.1167-1174.
Chen, J.S, C.T. Lee, and Y.S. Chen (2017) Storage Stability evaluation of Polymer Modified Bitumens. Journal of the Eastern Asia Society for Transportation Studies, Vol.12, pp.1518-1530.
Dalhat M.A., and H.I. Al-Abdul Wahhab (2015) Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. International Journal of Pavement Engineering, Vol.18(4), pp.349-357.
D’Angelo, J.A. (2009) The relationship of the MSCR test to rutting. Road Materials and Pavement Design, Vol.10, pp.61-80.
D’Angelo, J.A. (2018) MSCR: What is Jnr diff and what does it mean? ASPHALT, Vol.33(3), pp.36-39.
Fan, Y.V., C.T. Lee, J.S. Lim, J.J. Klemes, and P.T.K. Le (2019) Cross-disciplinary approaches towards smart, resilient and sustainable circular economy. Journal of Cleaner Production, Vol.232, pp.1482-1491.
Fakhri, M., and A.R. Ghanizadeh (2014) An experimental study on the effect of loading history parameters on the resilient modulus of conventional and SBS-modified asphalt mixes. Construction and Building Materials, Vol.53, pp.284-293.
Fang, C. Y. Zhang, Q. Yu, X. Zhou, D. Guo, R. Yu, and M. Zhang (2013) Preparation, Characterization and Hot Storage Stability of Asphalt Modified by Waste Polyethylene Packaging. Journal of Materials Science and Technology, Vol.29(5), pp.434-438.
Isacsson, U., and X. Lu (1995) Testing and appraisal of polymer modified road bitumen – state of the art. Materials and Structures, Vol.28(3), pp.139-159.
Jadidi, K., M. Khalili, M. Karakouzian, and S. Amirkhanian (2019) Toughness, Tenacity and Maximum Initial Strength of rubber modified asphalt binders. Engineering, Technology and Applied Science Research, Vol.9(1), pp.3765-3769.
Kashif., M. Irfan, S. Ahmed, A. Ahmed, and A. Khattak (2014) Experimental Investigation of Strength and Stiffness Characteristics of Hot Mix Asphalt (HMA). Procedia Engineering, Vol.77, pp.155-160.
Kofteci, S., O. Admedzade, and B. Kultayev (2014) Performance evaluation of bitumen modified by various types of waste plastics. Construction and Building Materials, Vol.73, pp.592-602.
Kok, B.V., and H. Colak (2011) Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Construction and Building Materials, Vol.25, pp.3204-3212.
Liang, M., X. Xin. W. Fan, J. Zhang, H. Jiang, and Z. Yao (2019) Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. International Journal of Pavement Engineering. Vol.2019, pp.1-10.
Merino, V., and D. Ayer (2018) Plastic Pollution Primer and Action Toolkit – End Plastic Pollution. Earth Day Network, Washington, D.C.
Mirsepahi, M., J. Tanzadeh, and S.A. Ghanoon (2020) Laboratory evaluation of dynamic performance and viscosity improvement in modified bitumen by combining nanomaterials and polymer. Construction and Building Materials, Vol.233, pp.1-11.
Moraga, G., S. Huysveld, F. Mathieux, G.A. Blengini, L. Alaerts, K.V. Acker, S. Meester, and J. Dewulf (2019) Circular economy indicators: What do they measure? Resource, Conservation & Recycling, Vol.146, pp.452-461.
Okhotnikova, E.S., I.N. Frolov, Y.M. Ganeeva, A.A. Firsin, and T.N. Yusupova (2019) Rheological behavior of recycled polyethylene modified bitumens. Petroleum Science and Technology, Vol.37(10), pp.1136-1142
Olabi, A.G., (2019) Circular economy and renewable energy. Energy, Vol.181, pp.450-454.
Padhan, R.K., A.A. Gupta, and A. Sreeram (2018) Effect of cross-linking agent on ethylene vinyl acetate/polyoctenamer modified bitumen. Road Materials and Pavement Design, Vol.20(7), pp.1615-1623.
Payne, J., P. McKeown, and M.D. Jones (2019) A circular economy approach to plastic waste. Polymer Degradation and Stability, Vol.165, pp.170-181.
Polman, P., (2013) Towards the Circular Economy – Opportunities for the Consumer Goods Sector, Ellen MacArthur Foundation, United Kingdom.
Punith, V.S., A. Veeraragavan, and S. N. Amirkhanian (2011) Evaluation of reclaimed polyethylene modified asphalt concrete mixtures. International Journal of Pavement Research and Technology, Vol.4(1), pp.1-10.
Punith, V.S., and A. Veeraragavan (2011) Behavior of reclaimed polyethylene modified asphalt cement for paving purposes. Journal of Materials in Civil Engineering, Vol.23(6), pp.833-845.
Sangita, T.A. Khan, Sabina, and D.K. Sharma (2011) Effect of waste polymer modifier on the properties of bituminous concrete mixes. Construction and Building Materials, Vol.25(10), pp.3841-3848.
Saboo, N., and P. Kumar (2016) Optimum Blending Requirements for EVA Modified Binder. Transportation Research Procedia, Vol.17, pp.98-106.
Saboo, N., and P. Kumar (2016) Analysis of different test methods for quantifying rutting susceptibility of asphalt binders. Journal of Materials in Civil Engineering, Vol.28(7), pp.1-8.
Urquhart, R., and K. Y. Khoo (2013) Investigations into the Effects of Polymer Segregation and Degradation in Polymer Modified Binders. Austroads Technical Report AP-T227-13, Austroads, Sydney NSW, Australia.
Vamegh, M., M. Ameri, and S.F.C. Naeni (2019) Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS. Construction and Building Materials, Vol.209, pp.202-214.
Wagner, J.R. (2016) Multilayer Flexible Packaging, 2nd edition, New York, USA.
White, G. (2019) Evaluating recycled waste plastic modification and extension of bituminous binder for asphalt. 18th Annual International Conference on Pavement Engineering and Infrastructure, pp.1-15, 27-28 February, Liverpool, England, United Kingdom.
Yousefi, A.A. (2003) Polyethylene dispersions in bitumen: the effects of the polymer structural parameters. Journal of Applied Polymer Science, Vol.90, pp.3183-3190.
Zhang, J., L.F. Walubita, A.B.M. Faruk, P. Karki, and G.S. Simate (2015) Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance – A laboratory study. Construction and Building Materials, Vol.94, pp.218-227.
Zhu, J., B. Birgisson, and N. Kringos (2014) Polymer modification of bitumen: advances and challenges. European Polymer Journal, Vol.54, pp.18-38.
Zou, G., J. Xu, and C. Wu (2017) Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design. International Journal of Pavement Research and Technology, Vol.10(3), pp.282-288.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw