進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1907201911443700
論文名稱(中文) 電沉積製備鐵氰化鈷銅修飾電極及其電催化抗壞血酸氧化反應之研究
論文名稱(英文) Electrodeposition of cobalt-copper hexacyanoferrate modified electrodes for electrocatalytic oxidation of ascorbic acid
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 107
學期 2
出版年 108
研究生(中文) 黃昱翔
研究生(英文) Yu-Hsiang Huang
學號 L36064090
學位類別 碩士
語文別 中文
論文頁數 120頁
口試委員 指導教授-黃守仁
口試委員-鄭沐政
口試委員-李賢哲
中文關鍵字 電沉積  鐵氰化鈷銅  化學修飾電極  電催化  抗壞血酸 
英文關鍵字 electrodeposition  cobalt-copper hexacyanoferrate  chemically modified electrodes  electrocatalysis  ascorbic acid 
學科別分類
中文摘要 本研究利用電沉積法,在鍍有銦錫氧化物之導電玻璃 (ITO glass) 上電沉積鐵氰化鈷銅薄膜,並應用於電催化抗壞血酸氧化反應。針對薄膜製備條件,本研究探討錯合劑乙二胺四乙酸二鈉 (EDTA-2Na) 濃度、沉積pH值以及沉積掃描圈數對製備鐵氰化鈷銅薄膜之影響,並將最佳化條件進行退火熱處理,探討退火前後對電催化抗壞血酸氧化反應之影響。
鐵氰化鈷銅修飾電極之性質鑑定,分別以X射線繞射分析儀 (XRD) 進行晶體結構分析、掃描式電子顯微鏡 (SEM) 進行表面形貌分析,能量分散式光譜分析儀 (EDS) 進行元素組成分析、電化學分析儀 (Electrochemical Analyzer) 以循環伏安法 (CV) 鑑定鐵氰化鈷銅修飾電極在0.1 M KNO3電解質溶液中之電化學性質分析以及在0.1 M KNO3 + 1 mM Vit.C中進行電催化抗壞血酸氧化反應。
由實驗可知在前驅液Co2+:Cu2+莫耳濃度比2:1,EDTA濃度2.5 mM、沉積pH值1.0且掃描圈數50圈所製備之鐵氰化鈷銅修飾電極有最佳的電催化抗壞酸效果,其電流密度值可達235.9 μA cm-2 ,而退火熱處理為在氮氣環境下以退火溫度200℃、退火時間1小時,發現退火後之鐵氰化鈷銅修飾電極對於電催化抗壞血酸氧化反應並無增加其效能的趨勢,但透過電化學性質分析可以得知,退火會對其內部微結構造成改變,包括金屬鈷或銅及金屬鐵之價數以及位置的交換。
英文摘要 A cobalt-copper hexacyanoferrate (Co-Cu HCF) film was electrodeposited on an indium tin oxide glass (ITO Glass) in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) by cyclic voltammetry (CV). The effect of EDTA-2Na is to decrease the effective concentration of Co2+ and Cu2+, which resulting in a homogeneous precipitation process, and therefore, forming the uniform nanoparticles of Co-Cu HCF. To optimize deposition conditions, parameters we discussed including the concentration of EDTA-2Na, pH value of deposition, scan cycles, and annealing process. The cobalt-copper hexacyanoferrate modified electrode (Co-Cu HCF/ITO) shows electrocatalytic activity toward the oxidation of ascorbic acid (AA) in 0.1 M potassium nitrate solution. The Co-Cu HCF/ITO electrodes have been characterized by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS). The electrochemical properties were tested by cyclic voltammetry.
論文目次 摘要 I
誌謝 X
目錄 XI
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 化學修飾電極 1
1-1-1 化學修飾電極發展 1
1-1-2 化學修飾電極製備 2
1-2 普魯士藍及類普魯士藍 3
1-2-1 普魯士藍 (Prussian Blue, PB) 3
1-2-2 類普魯士藍 (Prussian Blue Analogs, PBA) 5
1-2-3 類普魯士藍化合物應用 5
1-3 抗壞血酸 (Ascorbic Acid, AA) 7
1-4 研究動機 8
1-5 研究目的 9
第二章 實驗原理 11
2-1 薄膜成長機制 11
2-2 循環伏安法 (Cyclic Voltammetry, CV) 12
2-2-1 循環伏安法分析原理 12
2-2-2 循環伏安法製備鐵氰化物 14
2-3 電催化原理 15
第三章 實驗方法與步驟 16
3-1 實驗流程圖 16
3-2 實驗藥品與耗材 17
3-3 實驗儀器 18
3-4 實驗步驟 19
3-4-1 氧化銦錫 (Indium Tin Oxide, ITO) 玻璃前處理 19
3-4-2 電沉積溶液配製 19
3-4-3 三電極系統之裝置 19
3-4-4 電沉積鐵氰化鈷銅薄膜 21
3-4-5 鐵氰化鈷銅退火熱處理 21
3-5 鐵氰化鈷銅性質鑑定 21
3-5-1 電化學分析 21
3-5-2 晶體結構分析 22
3-5-3 表面形貌分析 23
3-5-4 元素組成分析 24
第四章 結果與討論 25
4-1 錯合劑EDTA-2Na對鐵氰化鈷銅薄膜之影響 25
4-1-1 薄膜晶體結構分析 27
4-1-2 薄膜表面形貌分析 31
4-1-3 薄膜元素組成分析 33
4-1-4 薄膜電催化抗壞血酸氧化反應 35
4-2 沉積pH值對鐵氰化鈷銅薄膜之影響 41
4-2-1 薄膜晶體結構分析 42
4-2-2 薄膜表面形貌分析 48
4-2-3 薄膜元素組成分析 54
4-2-4 薄膜電催化抗壞血酸氧化反應 57
4-3 掃描圈數對鐵氰化鈷銅薄膜之影響 63
4-3-1 薄膜晶體結構分析 64
4-3-2 薄膜表面形貌分析 76
4-3-3 薄膜元素組成分析 88
4-3-4 薄膜電催化抗壞血酸氧化反應 92
4-4 退火熱處理對鐵氰化鈷銅薄膜之影響 98
4-4-1 薄膜晶體結構分析 100
4-4-2 薄膜表面形貌分析 103
4-4-3 薄膜元素組成分析 106
4-4-4 薄膜電催化抗壞血酸氧化反應 107
第五章 結論 111
參考文獻 114
參考文獻 1. Lane, R. F., Hubbard, A. T., Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents. The Journal of Physical Chemistry 1973, 77 (11), 1401-1410.
2. Watkins, B. F., Behling, J. R., Kariv, E., Miller, L. L., Chiral electrode. Journal of the American Chemical Society 1975, 97 (12), 3549-3550.
3. Moses, P. R., Wier, L., Murray, R. W., Chemically modified tin oxide electrode. Analytical Chemistry 1975, 47 (12), 1882-1886.
4. Casella, I. G., Guascito, M. R., Electrocatalysis of ascorbic acid on the glassy carbon electrode chemically modified with polyaniline films. Electroanalysis 1997, 9 (18), 1381-1386.
5. Wang, J., Li, M., Shi, Z., Li, N., Gu, Z., Electrocatalytic Oxidation of Norepinephrine at a Glassy Carbon Electrode Modified with Single Wall Carbon Nanotubes. Electroanalysis 2002, 14 (3), 225-230.
6. Baioni, A. P., Vidotti, M., Fiorito, P. A., de Torresi, S. I. C., Copper hexacyanoferrate nanoparticles modified electrodes: A versatile tool for biosensors. Journal of Electroanalytical Chemistry 2008, 622 (2), 219-224.
7. Kang, X., Mai, Z., Zou, X., Cai, P., Mo, J., A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes. Analytical Biochemistry 2007, 369 (1), 71-79.
8. Yantasee, W., Lin, Y., Zemanian, T. S., Fryxell, G. E., Voltammetric detection of lead(ii) and mercury(ii) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst 2003, 128 (5), 467-472.
9. Senthilkumar, S., Saraswathi, R., Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: Optimization and field measurements. Sensors and Actuators B: Chemical 2009, 141 (1), 65-75.
10. March, G., Nguyen, T. D., Piro, B., Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis. Biosensors 2015, 5 (2), 241-275.
11. Zen, J.-M., Senthil Kumar, A., Tsai, D.-M., Recent Updates of Chemically Modified Electrodes in Analytical Chemistry. Electroanalysis 2003, 15 (13), 1073-1087.
12. Florou, A. B., Prodromidis, M. I., Tzouwara-Karayanni, S. M., Karayannis, M. I., Fabrication and voltammetric study of lanthanum 2,6-dichlorophenolindophenol chemically modified screen printed electrodes.: Application for the determination of ascorbic acid. Analytica Chimica Acta 2000, 423 (1), 107-114.
13. Zen, J.-M., Jeng, S.-H., Chen, H.-J., Determination of Paraquat by Square-Wave Voltammetry at a Perfluorosulfonated Ionomer/Clay-Modified Electrode. Analytical Chemistry 1996, 68 (3), 498-502.
14. Flink, S., van Veggel, F. C. J. M., Reinhoudt, D. N., Sensor Functionalities in Self-Assembled Monolayers. Advanced Materials 2000, 12 (18), 1315-1328.
15. Downard, A. J., Electrochemically Assisted Covalent Modification of Carbon Electrodes. Electroanalysis 2000, 12 (14), 1085-1096.
16. Oyama, N., Anson, F. C., Factors Affecting the Electrochemical Responses of Metal Complexes at Pyrolytic Graphite Electrodes Coated with Films of Poly(4‐Vinylpyridine). Journal of The Electrochemical Society 1980, 127 (3), 640-647.
17. Munteanu, F. D., Kubota, L. T., Gorton, L., Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate. Journal of Electroanalytical Chemistry 2001, 509 (1), 2-10.
18. Keggin, J. F., Miles, F. D., Structures and Formulæ of the Prussian Blues and Related Compounds. Nature 1936, 137 (3466), 577-578.
19. Itaya, K., Uchida, I., Neff, V. D., Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Accounts of Chemical Research 1986, 19 (6), 162-168.
20. Ludi, A., Güdel, H. U. In Structural chemistry of polynuclear transition metal cyanides, Berlin, Heidelberg, Springer Berlin Heidelberg: Berlin, Heidelberg, 1973, pp 1-21.
21. Piernas Muñoz, M. J., Castillo Martínez, E., Prussian Blue and Its Analogues. Structure, Characterization and Applications. In Prussian Blue Based Batteries, Springer International Publishing: Cham, 2018, pp 9-22.
22. Neff, V. D., Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of The Electrochemical Society 1978, 125 (6), 886-887.
23. Itaya, K., Ataka, T., Toshima, S., Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. Journal of the American Chemical Society 1982, 104 (18), 4767-4772.
24. Wessells, C. D., Huggins, R. A., Cui, Y., Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nature Communications 2011, 2, 550.
25. Cai, C.-X., Xue, K.-H., Xu, S.-M., Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation. Journal of Electroanalytical Chemistry 2000, 486 (2), 111-118.
26. Wessells, C. D., Peddada, S. V., Huggins, R. A., Cui, Y., Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries. Nano Letters 2011, 11 (12), 5421-5425.
27. Jayasri, D., Narayanan, S. S., Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. Journal of Hazardous Materials 2007, 144 (1), 348-354.
28. Costa, W. M., Cardoso, W. S., Marques, E. P., Bezerra, C. W. B., Ferreira, A. A. P., Song, C., Zhang, J., Marques, A. L. B., Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electrooxidation. Journal of the Brazilian Chemical Society 2013, 24, 651-656.
29. Lin, M. S., Tseng, T. F., Shih, W. C., Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide. Analyst 1998, 123 (1), 159-163.
30. Tsiafoulis, C. G., Trikalitis, P. N., Prodromidis, M. I., Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochemistry Communications 2005, 7 (12), 1398-1404.
31. Zhang, L., Chen, L., Zhou, X., Liu, Z., Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Advanced Energy Materials 2015, 5 (2), 1400930.
32. Sharma, V. V., Tonelli, D., Guadagnini, L., Gazzano, M., Copper-cobalt hexacyanoferrate modified glassy carbon electrode for an indirect electrochemical determination of mercury. Sensors and Actuators B: Chemical 2017, 238, 9-15.
33. Wessells, C. D., McDowell, M. T., Peddada, S. V., Pasta, M., Huggins, R. A., Cui, Y., Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage. ACS Nano 2012, 6 (2), 1688-1694.
34. Safavi, A., Kazemi, S. H., Kazemi, H., Electrochemically deposited hybrid nickel–cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors. Electrochimica Acta 2011, 56 (25), 9191-9196.
35. Kuperman, N., Hopkins, M., Olson, S., Goncher, G., Evans, D., Solanki, R. In Cathode Material Composed of Manganese Cobalt Hexacyanoferrate Nanoparticles for Aqueous Zinc Ion Intercalation Batteries, 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), 14-17 Oct. 2018, 2018, pp 1-4.
36. Cataldi, T. R. I., de Benedetto, G. E., Campa, C., Electrochemical quartz crystal microbalance study and electrochromic behavior of a novel ruthenium purple film. Journal of Electroanalytical Chemistry 1997, 437 (1), 93-98.
37. Avendano, C., Hilfiger, M. G., Prosvirin, A., Sanders, C., Stepien, D., Dunbar, K. R., Temperature and Light Induced Bistability in a Co3[Os(CN)6]2 6H2O Prussian Blue Analog. Journal of the American Chemical Society 2010, 132 (38), 13123-13125.
38. Kaye, S. S., Long, J. R., Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). Journal of the American Chemical Society 2005, 127 (18), 6506-6507.
39. Ohkoshi, S.-i., Nakagawa, K., Tomono, K., Imoto, K., Tsunobuchi, Y., Tokoro, H., High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering. Journal of the American Chemical Society 2010, 132 (19), 6620-6621.
40. Abbaspour, A., Kamyabi, M. A., Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. Journal of Electroanalytical Chemistry 2005, 576 (1), 73-83.
41. Sophia, S. J., Devi, S., Pandian, K., Electrocatalytic Oxidation of Hydrazine Based on NiHCF@TiO2 Core-Shell Nanoparticles Modified GCE. International Journal of Electrochemical Science 2012, 7 (8), 6580-6598.
42. Cui, X., Hong, L., Lin, X., Electrocatalytic Oxidation of Hydroxylamine on Glassy Carbon Electrodes Modified by Hybrid Copper-Cobalt Hexacyanoferrate Films. Analytical Sciences 2002, 18 (5), 543-547.
43. Abbaspour, A., Ghaffarinejad, A., Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochimica Acta 2008, 53 (22), 6643-6650.
44. Chen, S.-M., Liao, C.-J., Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties. Electrochimica Acta 2004, 50 (1), 115-125.
45. Xun, Z., Cai, C., Xing, W., Lu, T., Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method. Journal of Electroanalytical Chemistry 2003, 545, 19-27.
46. Abbaspour, A., Mehrgardi, M. A., Electrocatalytic Oxidation of Guanine and DNA on a Carbon Paste Electrode Modified by Cobalt Hexacyanoferrate Films. Analytical Chemistry 2004, 76 (19), 5690-5696.
47. Chen, S. M., Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate. Journal of Electroanalytical Chemistry 2002, 521 (1), 29-52.
48. Majidi, M. R., Asadpour-Zeynali, K., Shahmoradi, K., Shivaeefar, Y., Electrochemical Characteristics of a Copper Hexacyanoferrate (CuHCNF) Modified Composite Carbon Electrode and Its Application toward Sulfite Oxidation. Journal of the Chinese Chemical Society 2010, 57 (3A), 391-398.
49. Fiorito, P. A., Córdoba de Torresi, S. I., Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors. Journal of Electroanalytical Chemistry 2005, 581 (1), 31-37.
50. Lin, M. S., Shih, W. C., Chromium hexacyanoferrate based glucose biosensor. Analytica Chimica Acta 1999, 381 (2), 183-189.
51. Noroozifar, M., Khorasani-Motlagh, M., Taheri, A., Preparation of silver hexacyanoferrate nanoparticles and its application for the simultaneous determination of ascorbic acid, dopamine and uric acid. Talanta 2010, 80 (5), 1657-1664.
52. Devadas, B., Sivakumar, M., Chen, S. M., Cheemalapati, S., An electrochemical approach: Switching Structures of rare earth metal Praseodymium hexacyanoferrate and its application to sulfite sensor in Red Wine. Electrochimica Acta 2015, 176, 350-358.
53. Liu, Y., Xu, L., Electrochemical sensor for tryptophan determination based on copper-cobalt hexacyanoferrate film modified graphite electrode. Sensors 2007, 7 (10), 2446-2457.
54. Liu, S., Pan, G. L., Li, G. R., Gao, X. P., Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. Journal of Materials Chemistry A 2015, 3 (3), 959-962.
55. Kumar, A., Kanagare, A. B., Banerjee, S., Kumar, P., Kumar, M., Jagannath, Sudarsan, V., Synthesis of cobalt hexacyanoferrate nanoparticles and its hydrogen storage properties. International Journal of Hydrogen Energy 2018, 43 (16), 7998-8006.
56. Zhao, F., Wang, Y., Xu, X., Liu, Y., Song, R., Lu, G., Li, Y., Cobalt Hexacyanoferrate Nanoparticles as a High-Rate and Ultra-Stable Supercapacitor Electrode Material. ACS Applied Materials & Interfaces 2014, 6 (14), 11007-11012.
57. Chen, R., Tanaka, H., Kawamoto, T., Asai, M., Fukushima, C., Na, H., Kurihara, M., Watanabe, M., Arisaka, M., Nankawa, T., Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochimica Acta 2013, 87, 119-125.
58. Singh, R. P., Pambid, E. R., Selective separation of silver from waste solutions on chromium(III) hexacyanoferrate(III) ion exchanger. Analyst 1990, 115 (3), 301-304.
59. Buettner, G., Q. Schafer, F., Ascorbate (Vitamin C), its Antioxidant Chemistry. 2001.
60. Wikimedia Commons contributors File:Ascorbic acid isomers.svg. https://commons.wikimedia.org/w/index.php?title=File:Ascorbic_acid_isomers.svg&oldid=326281612
61. Li, F., Dong, S., The electrocatalytic oxidation of ascorbic acid on prussian blue film modified electrodes. Electrochimica Acta 1987, 32 (10), 1511-1513.
62. Wang, Q., Tang, Q., Improved sensing of dopamine and ascorbic acid using a glassy carbon electrode modified with electrochemically synthesized nickel-cobalt hexacyanoferrate microparticles deposited on graphene. Microchimica Acta 2015, 182 (3), 671-677.
63. Wasa, K., Kitabatake, M., Adachi, H., Thin film materials technology: sputtering of control compound materials. Springer Science & Business Media: 2004.
64. Kissinger, P. T., Heineman, W. R., Cyclic voltammetry. Journal of Chemical Education 1983, 60 (9), 702.
65. Itaya, K., Akahoshi, H., Toshima, S., Electrochemistry of Prussian Blue Modified Electrodes: An Electrochemical Preparation Method. Journal of The Electrochemical Society 1982, 129 (7), 1498-1500.
66. 王飛. 納米結構多核金屬鐵氰化物化學修飾電極的制備及應用. 2012.
67. 王俊傑, 黃士杰, 李穎弦, 楊汶釧, 林修正, 電催化(Electrocatalysis)及電催化觸媒(Electrocatalysts)的特性. 化工 2009, 56 (5), 3-16.
68. Yu, H., Wang, Y., Lian, Y.-Y., Song, S.-W., Liu, Z.-Y., Qi, G.-C., Electrochemical preparation of cobalt hexacyanoferrate nanoparticles under the synergic action of EDTA and overoxidized polypyrrole film. Electrochimica Acta 2012, 85, 650-658.
69. Birkholz, M., Principles of X-ray Diffraction. In Thin Film Analysis by X‐Ray Scattering, 2006, pp 1-40.
70. Reimer, L., Electron Optics of a Scanning Electron Microscope. In Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer Berlin Heidelberg: Berlin, Heidelberg, 1998, pp 13-56.
71. Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Fiori, C., Lifshin, E., X-Ray Spectral Measurement: WDS and EDS. In Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologist, Materials Scientist, and Geologists, Springer US: Boston, MA, 1981, pp 205-273.
72. Qu, F. L., Yang, M. H., Lu, Y. S., Shen, G. L., Yu, R. Q., Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA. Analytical and Bioanalytical Chemistry 2006, 386 (2), 228-234.
73. Cui, X., Hong, L., Lin, X., Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacyanoferrates of copper and cobalt. Journal of Electroanalytical Chemistry 2002, 526 (1-2), 115-124.
74. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K. A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 2013, 1 (1), 011002.
75. Hosseini, P., Wittstock, G., Brand, I., Infrared spectroelectrochemical analysis of potential dependent changes in cobalt hexacyanoferrate and copper hexacyanoferrate films on gold electrodes. Journal of Electroanalytical Chemistry 2018, 812, 199-206.
76. Kulesza, P. J., Malik, M. A., Zamponi, S., Berrettoni, M., Marassi, R., Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films. Journal of Electroanalytical Chemistry 1995, 397 (1), 287-292.
77. Ng, C. W., Ding, J., Gan, L. M., Microstructural Changes Induced by Thermal Treatment of Cobalt(II) Hexacyanoferrate(III) Compound. Journal of Solid State Chemistry 2001, 156 (2), 400-407.
78. Ng, C. W., Ding, J., Shi, Y., Gan, L. M., Structure and magnetic properties of copper(II) hexacyanoferrate(III) compound. Journal of Physics and Chemistry of Solids 2001, 62 (4), 767-775.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw