進階搜尋


 
系統識別號 U0026-1907201902253800
論文名稱(中文) 大學校園公共自行車系統潛在使用者之使用意圖
論文名稱(英文) Use Intention of Potential Users to University Campus Public Bicycle System
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 107
學期 2
出版年 108
研究生(中文) 林佑霖
研究生(英文) You-Lin Lin
學號 R56061326
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 指導教授-魏健宏
口試委員-胡守任
口試委員-李威勳
中文關鍵字 大學校園公共自行車  組織支持理論  科技接受模式  使用意圖  計畫行為理論 
英文關鍵字 University Campus Public Bicycle System  Theory of Planned Behavior  Technology Acceptance Model  Organizational Support Theory  Intention of use 
學科別分類
中文摘要 自行車為現今台灣地區大學校園內主要的運具,當大學校園人口數具有相當規模時,便有私有自行車過多之問題,而公共自行車共享系統是多人分時使用一台自行車,相較於私有自行車,更具環保概念,然而因政策配合困難與需求的不同,校方很難與地方政府合作建置公共自行車系統,故由校方自行建設校園公共自行車是未來發展方向之一。
國立成功大學「成功大學校園公共自行車系統」(CK-Bike)已啟用一段時間,但該系統的使用率仍然不高。因此清楚地了解校內潛在使用者的使用意圖至關重要,以便能夠增加校園內公共自行車的績效。
過去國內有相當多文獻探討政府建置的公共自行車系統,然而由政府建置的公共自行車系統與大學校園內的公共自行車系統無論在規模、功能、服務對象與服務模式皆有所差異,校內潛在使用者使用的心理,有別於以往公共自行車系統的使用者意圖。因此,本研究以科技接受模式結合計畫行為理論與組織支持理論作為研究架構,選定成功大學教職員工生為受測對象,探索其對於校園公共自行車的態度與認知,並了解校方支持是否成為影響因素之一。
本研究於2019年三月底,以實地發放問卷與網路問卷的方式收集資料,共回收有效問卷273份。利用結構方程模式分析,結果發現感知有用性、態度、主觀規範及知覺行為控制均會正向影響使用意圖。其中感知有用性除了會直接顯著影響使用意圖外,也會透過態度對使用意圖造成間接影響,是影響使用意圖最重要的因素。本研究也發現潛在使用者於校園中有無個人自行車及不同的身分別在部份構面上存在顯著差異。最後本研究將對結果進行討論並提供實務建議和未來研究建議。
英文摘要 Campus public bicycle systems may solve the problem of excess private bicycles occupying parking space on campus. CK-Bike was the first campus public bicycle system introduced to Taiwan’s universities, but it had lower than expected usage. While some case studies of campus public bicycle systems are available, their features are quite different from CK-Bike with respect to scale, functions and operational modes. Therefore, we explore the use intentions of potential CK-Bike service users. The theoretical foundation of this study is the Technology Acceptance Model (TAM). The Theory of Planned Behaviour (TPB) and Organizational Support Theory are also incorporated to develop a hybrid structure exploring the use intentions of potential users of university campus public bicycle services. The data collection for this research was conducted at NCKU campus and an online questionnaire on the CK-Bike Fan page. In total, 273 usable questionnaires were analysed. The results of the SEM analysis show that perceived usefulness, attitude towards use, perceived behavioural control, and subjective norm are four important determinants of intention to use the university campus public bicycle system. Among the four determinants, perceived usefulness is the most influential factor. Perceived usefulness not only directly affects the intention of use but also indirectly affects behavioural intention through attitude. Therefore, the operations team could increase the perceived usefulness by increasing the station to increase the behavioural intention.
論文目次 口試合格證明 i
摘要 ii
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 3
1.4 研究流程 3
第二章 文獻回顧 5
2.1 公共自行車 5
2.2 校園公共自行車 12
2.2.1 國外校園公共自行車 13
2.2.2 國立成功大學校園公共自行車 16
2.3 使用者行為理論 18
2.4 組織支持 24
2.5 小結 27
第三章 研究方法 29
3.1 研究架構與定義 29
3.2 研究假設 36
3.3 問卷設計 41
3.3.1 問卷尺度衡量 42
3.3.2 問卷問項與內容 42
3.3.3 問卷發放與樣本數目 46
3.4 分析方法 47
第四章 資料蒐集與分析 52
4.1 問卷回收與資料處理 52
4.2 受測者基本資料 53
4.3 信效度分析 56
4.3.1 信度分析 56
4.3.2 驗證性分析 61
4.4 研究變數之敘述性統計分析 65
4.5 研究假設驗證 69
4.5.1 結構方程模式分析 69
4.5.2 樣本屬性對各個構面之影響 74
4.5.3 小結 79
4.6 分析結果與討論 81
第五章 結論與建議 84
5.1 研究結論 84
5.2 實務建議 88
5.3 研究限制與未來研究建議 90
參考文獻 91
附錄一:正式問卷 99
附錄二:大學校園公共自行車系統使用者 資料分析 104
參考文獻 網路文獻
1. 中國杭州市公共自行車官網,http://www.hzsggzxc.com/index.aspx。
2. 台北市YouBike 微笑單車官網,http://wa.taipei.youbike.com.tw/index。
3. 台北市政府交通局,統計資訊,臺北市YouBike使用特性報乎你知,
https://www.dot.gov.taipei/News.aspx?n=44EAAF8913752298&sms=DADC-9630355BA510。
4. 加利福尼亞大學爾灣分校(UCI) ZotWheel官網,https://www.parking.uci.e-du/zot-wheels/main.cfm。
5. 美國紐約市Citi Bike官網,https://www.citibikenyc.com/。
6. 康乃爾大學(Cornell University) BigRedBikes官網,https://bigredbikes.cor-nell.edu/。
7. 賓夕法尼亞州立大學(UAM)Zagster官網,http://bike.zagster.com/psu/。
中文文獻
1. 李茂能,民國95年,結構方程模式軟體 Amos 之簡介及其在測驗編製上之應用,台北:心理。
2. 陳正昌、程炳林、陳新豐、劉子鍵,民100年,多變量分析方法: 統計軟體應用六版(pp.565-571),台北:五南。
英文文獻
1. Abdekhoda, M., Ahmadi, M., Gohari, M., & Noruzi, A. (2015). The effects of organizational contextual factors on physicians’ attitude toward adoption of Electronic Medical Records. Journal of Biomedical Informatics, Vol.53, pp.174-179.
2. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control pp.11-39. Springer, Berlin, Heidelberg.
3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, Vol.50, No.2, pp.179-211.
4. Ajzen, I. (2002a). Perceived behavioral control, self‐efficacy, locus of control, and the theory of planned behavior 1. Journal of Applied Social Psychology, Vol.32, No.4, pp.665-683.
5. Ajzen, I., (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations. Retrieved from http://www.unix.oit.umass.edu/~aizen/pdf/tpb.measurement.pdf
6. Ajjan, H., & Hartshorne, R. (2008). Investigating faculty decisions to adopt Web 2.0 technologies: Theory and empirical tests. The Internet and Higher Education, Vol.11, No.2, pp.71-80.
7. Akar, G., & Clifton, K. (2009). Influence of individual perceptions and bicycle infrastructure on decision to bike. Transportation Research Record: Journal of the Transportation Research Board, Vol.2140, pp.165-172.
8. Amoako-Gyampah, K., & Salam, A. F. (2004). An extension of the technology acceptance model in an ERP implementation environment. Information & Management, Vol.41, No.6, pp.731-745.
9. Armitage, C. J., & Conner, M. (2001). Efficacy of the theory of planned behaviour: A meta‐analytic review. British Journal of Social Psychology, Vol.40, No.4, pp.471-499.
10. Bachand-Marleau, J., Lee, B. H., & El-Geneidy, A. M. (2012). Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use. Transportation Research Record, Vol.2314, No.1, pp.66-71.
11. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, Vol.16, No.1, pp.74-94.
12. Barua, P. (2013). The moderating role of perceived behavioral control: The literature criticism and methodological considerations. International Journal of Business and Social Science, Vol.4, No.10.
13. Beaudry, A., & Pinsonneault, A. (2005). Understanding user responses to information technology: A coping model of user adaptation. MIS Quarterly, Vol.29, No.3, pp.493-524.
14. Blondel, B., Mispelon, C. & Ferguson, J. (2011). Cycle more Often 2 cool down the planet. Quantifying CO2 savings of cycling. European Cyclists’s Federation ECF, Brussel.
15. Casaló, L. V., Flavián, C., & Guinalíu, M. (2010). Determinants of the intention to participate in firm-hosted online travel communities and effects on consumer behavioral intentions. Tourism Management, Vol.31, No.6, pp.898-911.

16. Castillo-Manzano, J. I., Castro-Nuño, M., & López-Valpuesta, L. (2015). Analyzing the transition from a public bicycle system to bicycle ownership: A complex relationship. Transportation Research Part D: Transport and Environment, Vol.38, pp.15-26
17. Chan, L., & Bishop, B. (2013). A moral basis for recycling: Extending the theory of planned behaviour. Journal of Environmental Psychology, Vol.36, pp.96-102.
18. Chen, C. D., Fan, Y. W., & Farn, C. K. (2007). Predicting electronic toll collection service adoption: An integration of the technology acceptance model and the theory of planned behavior. Transportation Research Part C: Emerging Technologies, Vol.15, No.5, pp.300-311.
19. Chen, S. Y. (2016). Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system. Transportation Research Part A: Policy and Practice, Vol.88, pp.58-72.
20. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, Vol.13, No.3, pp.319-340.
21. Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, Vol.38, No.3, pp.475-487.
22. De Geus, B., De Bourdeaudhuij, I., Jannes, C., & Meeusen, R. (2007). Psychosocial and environmental factors associated with cycling for transport among a working population. Health Education Research, Vol.23, No.4, pp.697-708.
23. De Leeuw, A., Valois, P., Ajzen, I., & Schmidt, P. (2015). Using the theory of planned behavior to identify key beliefs underlying pro-environmental behavior in high-school students: Implications for educational interventions. Journal of Environmental Psychology, Vol.42, pp.128-138.
24. DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of Public Transportation, Vol.12, No.4, pp.41-56.
25. De Nazelle, A., Nieuwenhuijsen, M. J., Antó, J. M., Brauer, M., Briggs, D., Braun-Fahrlander, C., et al. (2011). Improving health through policies that promote active travel: a review of evidence to support integrated health impact assessment. Environment International, Vol.37, No4, pp.766-777.

26. Farahbod, F., Azadehdel, M., khoshdel Mofidi, M., Shahabi, S., Pazhouh, L. D., Ghorbaninejad, N., & Shadkam, F. (2013). The relationship between trait emotional intelligence and entrepreneurship attitudes and intentions. Journal of Public Administration and Policy Research, Vol.5, No.3, pp.79-85.
27. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley, Reading, MA.
28. Fishman, E., Washington, S., & Haworth, N. (2013). Bike share: a synthesis of the literature. Transport reviews, Vol.33, No.2, pp.148-165.
29. Fund, A., Hall, A., Gorby, C., Siegel, D., Wolf, E., Burdett, J. & Gathunguri, M. (2012). Sustainable transportation at the University of Kansas. pp.1-19.
30. Gardner, C., & Gaegauf, T. (2014). The Impact of Bikesharing.
31. Gharaibeh, N., Wilson, C., Darter, M., & Jones, G. (1998). Development of a bike path Management System for the University of Illinois at Urbana-Champaign. Transportation Research Record: Journal of the Transportation Research Board, Vol.1636, pp.56-63.
32. Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate data analysis: A global perspective (Vol. 7).
33. Hair, J. F., Anderson, R. E., Tatham, R. L., & William, C. (1998). Multivariate data analysis.
34. Han, H. (2015). Travelers' pro-environmental behavior in a green lodging context: Converging value-belief-norm theory and the theory of planned behavior. Tourism Management, Vol.47, pp.164-177.
35. Han, H., Meng, B., & Kim, W. (2017). Emerging bicycle tourism and the theory of planned behavior. Journal of Sustainable Tourism, Vol.25, No.2, pp.292-309.
36. Hazen, B. T., Overstreet, R. E., & Wang, Y. (2015). Predicting public bicycle adoption using the technology acceptance model. Sustainability, Vol.7, No.11, pp.14558-14573.
37. Heda, A. (2012). Implementation of a Campus Bike Sharing Program for Washington University’s Danforth Campus. Washington University Parking and Transportation Services. December, 7, 2012.
38. Heinen, E., Maat, K., & van Wee, B. (2013). The effect of work-related factors on the bicycle commute mode choice in the Netherlands. Transportation, Vol.40, No.1, pp.23-43.

39. Hsu, C. L., & Lin, J. C. C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, Vol.45, No.1, pp.65-74.
40. Huh, H. J., Kim, T. T., & Law, R. (2009). A comparison of competing theoretical models for understanding acceptance behavior of information systems in upscale hotels. International Journal of Hospitality Management, Vol.28, No.1, pp.121-134.
41. Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, Vol.16, No.2, pp.91-112.
42. Jain, S., & Pant, P. (2010). Environmental management systems for educational institutions: A case study of TERI University, New Delhi. International Journal of Sustainability in Higher Education, Vol.11, No.3, pp.236-249.
43. Jin, D., Chai, K. H., & Tan, K. C. (2012). Organizational adoption of new service development tools. Managing Service Quality: An International Journal, Vol.22, No.3, pp.233-259.
44. Kaplan, S., Manca, F., Nielsen, T. A. S., & Prato, C. G. (2015). Intentions to use bike-sharing for holiday cycling: An application of the Theory of Planned Behavior. Tourism Management, Vol.47, pp.34-46.
45. Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, Vol.23, No.2, pp.183-213.
46. Karki, T. K., & Tao, L. (2016). How accessible and convenient are the public bicycle sharing programs in China? Experiences from Suzhou city. Habitat International, Vol.53, pp.188-194.
47. Keil, M., Beranek, P. M., & Konsynski, B. R. (1995). Usefulness and ease of use: field study evidence regarding task considerations. Decision Support Systems, Vol.13, No.1, pp.75-91.
48. Khoo, H. L., & Ong, G. P. (2015). Understanding sustainable transport acceptance behavior: A case study of Klang valley, Malaysia. International Journal of Sustainable Transportation, Vol.9, No.3, pp.227-239.
49. Kim, T. G., Lee, J. H., & Law, R. (2008). An empirical examination of the acceptance behaviour of hotel front office systems: An extended technology acceptance model. Tourism Management, Vol.29, No.3, pp.500-513.
50. Krithika, J., & Venkatachalam, B. (2014). A study on impact of subjective norms on entrepreneurial intention among the business students in Bangalore. IOSR Journal of Business and Management, Vol.16, No.5, pp.48-50.
51. Lee, M. K., Cheung, C. M., & Chen, Z. (2005). Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation. Information & Management, Vol.42, No.8, pp.1095-1104.
52. Lee, Y. H., Hsieh, Y. C., & Chen, Y. H. (2013). An investigation of employees' use of e-learning systems: applying the technology acceptance model. Behaviour & Information Technology, Vol.32, No.2, pp.173-189.
53. Lee, D., Lee, S. M., Olson, D. L., & Hwan Chung, S. (2010). The effect of organizational support on ERP implementation. Industrial Management & Data Systems, Vol.110, No.2, pp.269-283.
54. Lin, J. R., & Yang, T. H. (2011). Strategic design of public bicycle sharing systems with service level constraints. Transportation Research Part E: Logistics and Transportation Review, Vol.47, No.2, pp.284-294.
55. Liu, Y., & Yang, Y. (2018). Empirical Examination of Users’ Adoption of the Sharing Economy in China Using an Expanded Technology Acceptance Model. Sustainability, Vol.10, No.4, pp.1-17.
56. Lois, D., Moriano, J. A., & Rondinella, G. (2015). Cycle commuting intention: A model based on theory of planned behaviour and social identity. Transportation Research Part F: Traffic Psychology and Behaviour, Vol.32, pp.101-113.
57. Lu, Y., Zhou, T., & Wang, B. (2009). Exploring Chinese users’ acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory. Computers in Human Behavior, Vol.25, No.1, pp.29-39.
58. Malhotra, Y., & Galletta, D. F. (1999). Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. In Systems sciences, 1999. HICSS-32, Proceedings of the 32nd Annual Hawaii International Conference on , IEEE.
59. Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, Vol.2, No.3, pp.173-191.
60. Midgley, P. (2011). Bicycle-sharing schemes: enhancing sustainable mobility in urban areas. United Nations, Department of Economic and Social Affairs, 8, pp.1-12.
61. Min, Q., Ji, S., & Qu, G. (2008). Mobile commerce user acceptance study in China: a revised UTAUT model. Tsinghua Science and Technology, Vol.13, No.3, pp.257-264.
62. Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Intentions to use mobile services: Antecedents and cross-service comparisons. Journal of the Academy of Marketing Science, Vol.33, No.3, pp.330-346.
63. Orlikowski, W. J. (2008). Using technology and constituting structures: A practice lens for studying technology in organizations. Resources, Co-Evolution and Artifacts, pp. 255-305, Springer, London.
64. Park, Y., & Chen, J. V. (2007). Acceptance and adoption of the innovative use of smartphone. Industrial Management & Data Systems, Vol.107, No.9, pp.1349-1365.
65. Passafaro, P., Rimano, A., Piccini, M. P., Metastasio, R., Gambardella, V., Gullace, G., & Lettieri, C. (2014). The bicycle and the city: Desires and emotions versus attitudes, habits and norms. Journal of Environmental Psychology, Vol.38, pp.76-83.
66. Pucher, J., Buehler, R., & Seinen, M. (2011). Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies. Transportation Research Part A: Policy and Practice, Vol.45, No.6, pp.451-475.
67. Reisinger, Y., & Turner, L. (1999). Structural equation modeling with Lisrel: Application in tourism. Tourism Management, Vol.20, No.10, pp.71-88.
68. Rietveld, P., & Daniel, V. (2004). Determinants of bicycle use: do municipal policies matter ?. Transportation Research Part A: Policy and Practice, Vol.38, No.7, pp.531-550.
69. Schneider, R. J. (2013). Theory of routine mode choice decisions: An operational framework to increase sustainable transportation. Transport Policy, Vol.25, pp.128-137.
70. Seyal, A. H., & Pijpers, G. G. M. (2004). Senior government executives' use of the internet: A Bruneian scenario. Behaviour & Information Technology, Vol.23, No.3, pp.197-210.
71. Shaheen, S., & Guzman, S. (2011). Worldwide bikesharing. Access, No.39, pp.22-27.
72. Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transportation Research Record: Journal of the Transportation Research Board, Vol.2143, pp.159-167.
73. Sharma, R., & Yetton, P. (2003). The contingent effects of management support and task interdependence on successful information systems implementation. MIS Quarterly, Vol.27, No.4, pp.533-556.
74. Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of Consumer Research, Vol.15, No.3, pp.325-343.
75. Sigurdardottir, S. B., Kaplan, S., Møller, M., & Teasdale, T. W. (2013). Understanding adolescents’ intentions to commute by car or bicycle as adults. Transportation Research Part D: Transport and Environment, Vol.24, pp.1-9.
76. Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, Vol.6, No.2, pp.144-176.
77. Tolley, R. (1996). Green campuses: cutting the environmental cost of commuting. Journal of Transport Geography, Vol.4, No.3, pp.213-217.
78. Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, Vol.39, No.2, pp.273-315.
79. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, Vol.46, No.2, pp.186-204.
80. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, Vol.27, No.3, pp.425-478.
81. Wu, L., & Chen, J. L. (2005). An extension of trust and TAM model with TPB in the initial adoption of on-line tax: an empirical study. International Journal of Human-Computer Studies, Vol.62, No.6, pp.784-808.
82. Yeon Kim, H., & Chung, J. E. (2011). Consumer purchase intention for organic personal care products. Journal of Consumer Marketing, Vol.28, No.1, pp.40-47.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw