進階搜尋


下載電子全文  
系統識別號 U0026-1907201811370900
論文名稱(中文) 以液相前驅物滲透法摻雜助燒結劑製備透光氧化鋁
論文名稱(英文) Sintering Aid Addition by Liquid Precursor Infiltration Technique in the Preparation of Translucent Alumina
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 謝佳真
研究生(英文) CHIA-CHEN HSIEH
學號 N46051180
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-黃啟原
口試委員-顏富士
口試委員-陳智成
中文關鍵字 透光多晶氧化鋁  注漿成型  前驅物滲透法  透光率  機械性質 
英文關鍵字 translucent polycrystalline alumina  slip casting  liquid precursor infiltration technique  transmittance  mechanical properties 
學科別分類
中文摘要 本研究之主旨在製備出透光多晶氧化鋁,利用注漿成型法製備密度高、均勻性佳之生胚,選擇適當的分散劑添加量改善高固含量的漿料黏度,經球磨後得到流動性佳的漿料,注入石膏模成型。不同於以往陶瓷製備的過程,避免助燒結劑對漿料黏度之影響,於生胚成型預燒結穩定後添加,所製成的生胚相對密度較高,約為66-67%,使用助燒結劑的前驅物硝酸鎂溶液以滲透法的方式添加0-2000 ppm Mg2+,並以濕式化學法將生胚進行全溶,以原子火焰光譜儀分析生胚實際吸收的含量,於常壓氣氛及真空氣氛下以不同條件燒結,探討燒結體之密度、微結構、透光度、硬度及破裂韌性。
實驗結果顯示,以硝酸鎂溶液的型式作為助燒結劑前驅物,採用真空滲透技術可使助燒結劑Mg2+於生胚內分布更均勻,雖然較高濃度的添加與預測值相差較多,經燒結後抑制晶粒成長的效果並未隨著添加量而有明顯變化,且有二次相的生成,使透光度大幅下降。
樣品於常壓氣氛燒結,燒結體的相對密度均在98.21%以下,孔隙率影響透光率效果甚劇,導致樣品均呈現不透明白霧狀。於真空氣氛高溫爐以較快的升溫速率 (10 oC/min),經過1700 oC持溫一小時燒結,添加500 ppm Mg2+之樣品燒結體密度可達99.57%,有最佳的全透光率及直線透光率分別為79.4%、14.0%,硬度及破裂韌性值分別為17.2 GPa、3.3 MPa×m1/2。
英文摘要 The results of this study revealed that the polycrystalline alumina which exhibited good optical and mechanical properties had a microstructure comprise of a small grain size, low porosity, and was without the second phase. The key step in the preparation process was the preparation of a high density and uniform microstructure in the green body, as this can avoid residue holes in the sintered body. In this study, polycrystalline alumina green bodies were produced by slip casting: PAA-NH4 was added at 1.2 wt% as the dispersant in order to achieve low viscosity in the slurry with solid content of 40 vol%. This resulted in optimum mobility for the preparation of higher density green bodies. Elimination of the fine particles and burning out of the organic dispersant was completed by pre-sintering at 800ºC for 12 h, resulting in more favorable pore channels for the use of the subsequent infiltration method to add sintering aids. The relative densities of the fabricated green bodies were 66-67%. This process differs from that of ceramic preparation, as additives are usually added during the slurry preparation stage. The use of the evacuated infiltration technique to add sintering aids to the stable green bodies can effectively avoid the influence of additives on the viscosity of the slurry and allow for uniform distribution of the sintering aids in the green bodies. The results show that the sample doped with 500 ppm Mg2+ after sintering at 1700 ºC for 1 h with a heating rate of 10ºC/min has high transmittance. For this sample, the sintered body relative density reached 99.6%, the real in-line transmission was 14.01% and its hardness and fracture toughness were 17.2 GPa and 3.3 MPa×m1/2, respectively.
論文目次 摘要 I
Abstract II
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 氧化鋁基本性質與晶體結構介紹 3
2-2 透光多晶氧化鋁 5
2-2-1 透光性質與機制 5
2-2-2 機械性質 10
2-3 透光多晶氧化鋁之原料 13
2-3-1 氧化鋁粉末特性 13
2-3-2 助燒結劑 13
2-4 透光多晶氧化鋁之成型技術 15
2-4-1 生胚成型與燒結行為 15
2-4-2 注漿成型法 17
2-5 液相前驅物滲透法 18
2-5-1前驅物滲透法 18
2-5-2滲透理論 18
2-6 透光多晶氧化鋁之燒結技術 21
2-6-1燒結理論與過程 21
2-6-2預燒結 23
2-6-3燒結技術 25
第三章 實驗方法與流程 27
3-1 實驗原料 27
3-1-1 起始粉末 27
3-1-2 分散劑 28
3-1-3 助燒結劑 28
3-2 實驗流程 29
3-3 生胚製程 30
3-2-1 石膏模製程 30
3-2-2 注漿成型 30
3-2-3 漿料黏度分析 31
3-2-4 滲透法添加助燒結劑 31
3-3生胚分析 32
3-3-1 密度量測 32
3-3-2 微結構觀察 32
3-3-3 化學定量分析 33
3-4 燒結體分析 34
3-4-1燒結條件 34
3-4-2 燒結體密度 35
3-4-3 燒結體微結構 35
3-4-4 透光率 35
3-4-5 硬度分析 36
3-4-6 破裂韌性分析 36
第四章 結果與討論 38
4-1 起始粉末分析 38
4-2 漿料分析 39
4-3 生胚分析 42
4-3-1 密度及微結構分析 42
4-3-2 助燒結劑的分布及含量分析 46
4-4 燒結體之觀察 50
4-4-1 不同燒結氣氛 50
4-4-2 不同升溫速率 54
4-4-3 不同燒結溫度 58
4-5 透光率分析 66
4-6 硬度與破裂韌性分析 71
4-7 透光燒結體之比較 74
第五章 結論 78
參考文獻 79

參考文獻 [1] M. Suárez, A. Fernández, R. Torrecillas, and J. L. Menéndez, "Sintering to transparency of polycrystalline ceramic materials," in Sintering of Ceramics-New Emerging TechniquesSpain: InTech, 2012, pp. 527-549.
[2] R. L. Coble, "Transparent alumina and method of preparation," U.S. Patent 3026210, 1962.
[3] M. Stuer, Z. Zhao, U. Aschauer, and P. Bowen, "Transparent polycrystalline alumina using spark plasma sintering: Effect of Mg, Y and La doping," Journal of the European Ceramic Society, vol. 30, no. 6, pp. 1335-1343, 2010.
[4] B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, "Microstructure and optical properties of transparent alumina," Acta Materialia, vol. 57, no. 5, pp. 1319-1326, 2009.
[5] I. Yamashita, H. Nagayama, and K. Tsukuma, "Transmission properties of translucent polycrystalline alumina," Journal of the American Ceramic Society, vol. 91, no. 8, pp. 2611-2616, 2008.
[6] T. Shirai, H. Watanabe, M. Fuji, and M. Takahashi, "Structural properties and surface characteristics on aluminum oxide powders," in "Annual report of the Ceramics Research Laboratory Nagoya Institute of Technology," Japan 1347-1694, 2010, vol. 9.
[7] D. W. Richerson, Modern ceramic engineering: properties, processing, and use in design. New York: CRC press, 2005.
[8] X. Mao, S. Wang, S. Shimai, and J. Guo, "Transparent polycrystalline alumina ceramics with orientated optical axes," Journal of the American Ceramic Society, vol. 91, no. 10, pp. 3431-3433, 2008.
[9] T. Ashikaga, B.-N. Kim, H. Kiyono, and T. S. Suzuki, "Effect of crystallographic orientation on transparency of alumina prepared using magnetic alignment and SPS," Journal of the European Ceramic Society, vol. 38, no. 7, pp. 2735-2741, 2018.
[10] R. Apetz and M. P. Bruggen, "Transparent alumina: a light‐scattering model," Journal of the American Ceramic Society, vol. 86, no. 3, pp. 480-486, 2003.
[11] H. S. Kim, S. T. Oh, and Y. D. Kim, "Effects of the two-step sintering process on the optical transmittance and mechanical strength of polycrystalline alumina ceramics," Ceramics International, vol. 40, no. 9, pp. 14471-14475, 2014.
[12] G. C. Wei, "Transparent ceramic lamp envelope materials," Journal of Physics D: Applied Physics, vol. 38, no. 17, pp. 3057-3065, 2005.
[13] A. Krell, T. Hutzler, and J. Klimke, "Transmission physics and consequences for materials selection, manufacturing, and applications," Journal of the European Ceramic Society, vol. 29, no. 2, pp. 207-221, 2009.
[14] Y. T. O, J. B. Koo, K. J. Hong, J. S. Park, and D. C. Shin, "Effect of grain size on transmittance and mechanical strength of sintered alumina," Materials Science and Engineering: A, vol. 374, no. 1-2, pp. 191-195, 2004.
[15] A. Krell, P. Blank, H. Ma, T. Hutzler, M. P. Bruggen, and R. Apetz, "Transparent sintered corundum with high hardness and strength," Journal of the American Ceramic Society, vol. 86, no. 1, pp. 12-18, 2003.
[16] X. Zhang, S. Liang, H. Li, and J. Yang, "Mechanical and optical properties of transparent alumina obtained by rapid vacuum sintering," Ceramics International, vol. 43, no. 1, pp. 420-426, 2017.
[17] G. Mata-Osoro, J. S. Moya, and C. Pecharroman, "Transparent alumina by vacuum sintering," Journal of the European Ceramic Society, vol. 32, no. 11, pp. 2925-2933, 2012.
[18] R. W. Rice, S. W. Freiman, and P. F. Becher, "Grain‐size dependence of fracture energy in ceramics: I, experiment," Journal of the American ceramic society, vol. 64, no. 6, pp. 345-350, 1981.
[19] A. Muchtar and L. Lim, "Indentation fracture toughness of high purity submicron alumina," Acta materialia, vol. 46, no. 5, pp. 1683-1690, 1998.
[20] K. Maiti and A. Sil, "Relationship between fracture toughness characteristics and morphology of sintered Al2O3 ceramics," Ceramics International, vol. 36, no. 8, pp. 2337-2344, 2010.
[21] http://accuratus.com/alumox.html
[22] S. I. Bae and S. Baik, "Critical concentration of MgO for the prevention of abnormal grain growth in alumina," Journal of the American Ceramic Society, vol. 77, no. 10, pp. 2499-2504, 1994.
[23] Z. Razavi Hesabi, M. Haghighatzadeh, M. Mazaheri, D. Galusek, and S. K. Sadrnezhaad, "Suppression of grain growth in sub-micrometer alumina via two-step sintering method," Journal of the European Ceramic Society, vol. 29, no. 8, pp. 1371-1377, 2009.
[24] G. C. Wei and W. H. Rhodes, "Sintering of translucent alumina in a nitrogen–hydrogen gas atmosphere," Journal of the American Ceramic Society, vol. 83, no. 7, pp. 1641-1648, 2000.
[25] S. K. Roy and R. L. Coble, "Solubilities of magnesia, titania, and magnesium titanate in aluminum oxide," Journal of the American Ceramic society, vol. 51, no. 1, pp. 1-6, 1968.
[26] H. Wang, H. Lin, W. Li, and J. Shi, "Effect of La doping on microwave dielectric properties of translucent polycrystalline alumina ceramic," Ceramics International, vol. 39, no. 5, pp. 4907-4911, 2013.
[27] C. Greskovich and J. A. Brewer, "Solubility of magnesia in polycrystalline alumina at high temperatures," Journal of the American Ceramic Society, vol. 84, no. 2, pp. 420-25, 2001.
[28] L. Miller, A. Avishai, and W. D. Kaplan, "Solubility Limit of MgO in Al2O3 at 1600 oC ," Journal of the American Ceramic Society, vol. 89, no. 1, pp. 350-353, 2006.
[29] K. Ando and M. Momoda, "Solubility of MgO in single-crystal Al2O3," International Journal of High Technology Ceramics, vol. 4, no. 1, p. 84, 1988.
[30] A. Krell and J. Klimke, "Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina," Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1985-1992, 2006.
[31] B. Liu, C. Peng, R. C. Wang, X. Wang, Z. Y. Wang, and T. T. Li, "Influence factors for stability behavior of Al2O3 suspension," The Chinese Journal of Nonferrous Metal, vol.22, no. 10, pp. 2833-2838, 2012.
[32] G. Liu, Z. Xie, W. Liu, L. Cheng, and Y. Wu, "Fabrication of translucent alumina ceramics from pre-sintered bodies infiltrated with sintering additive precursor solutions," Journal of the European Ceramic Society, vol. 32, no. 4, pp. 711-715, 2012.
[33] B. R. Marple and D. J. Green, "Mullite alumina particulate composites by infiltration processing: II, infiltration and characterization," Journal of the American Ceramic Society, vol. 73, no. 12, pp. 3611-3616, 1990.
[34] P. Honeyman‐Colvin and F. F. Lange, "Infiltration of porous alumina bodies with solution precursors: strengthening via compositional grading, grain size control, and transformation toughening," Journal of the American Ceramic Society, vol. 79, no. 7, pp. 1810-1814, 1996.
[35] G. Tari, J. Ferreira, and O. Lyckfeldt, "Influence of magnesia on colloidal processing of alumina," Journal of the European Ceramic Society, vol. 17, no. 11, pp. 1341-1350, 1997.
[36] 賴岳淵,以注漿成形法製備透光氧化鋁陶瓷,碩士論文,資源工程學系,國立成功大學,台南市,2016。
[37] S. J. Glass and D. J. Green, "Permeability and infiltration of partially sintered ceramics," Journal of the American Ceramic Society, vol. 82, no. 10, pp. 2745-2752, 1999.
[38] P. Mogilevsky, R. J. Kerans, H. D. Lee, K. A. Keller, and T. A. Parthasarathy, "On densification of porous materials using precursor solutions," Journal of the American Ceramic Society, vol. 90, no. 10, pp. 3073-3084, 2007.
[39] W. C. Tu and F. F. Lange, "Liquid precursor infiltration processing of powder compacts: I, kinetic studies and microstructure development," Journal of the American Ceramic Society, vol. 78, no. 12, pp. 3277-3282, 1995.
[40] R. L. Coble, "Sintering crystalline solids. II. experimental test of diffusion models in powder compacts," Journal of Applied Physics, vol. 32, no. 5, pp. 793-799, 1961.
[41] M. MUNRO, "Evaluated material properties for a sintered alpha‐alumina," Journal of the American Ceramic Society, vol. 80, no. 8, pp. 1919-1928, 1997.
[42] M. Ashby, "A first report on sintering diagrams," Acta Metallurgica, vol. 22, no. 3, pp. 275-289, 1974.
[43] F. J. Lin, L. C. Jonghe, and M. N. Rahaman, "Microstructure refinement of sintered alumina by a two‐step sintering technique," Journal of the American Ceramic Society, vol. 80, no. 9, pp. 2269-2277, 1997.
[44] R. Coble, "Sintering alumina: effect of atmospheres," Journal of the American Ceramic Society, vol. 45, no. 3, pp. 123-127, 1962.
[45] C. J. Ting and H. Y. Lu, "Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel," Journal of the American Ceramic Society, vol. 82, no. 4, pp. 841-848, 1999.
[46] P. Bowen and C. Carry, "From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides," Powder Technology, vol. 128, no. 2-3, pp. 248-255, 2002.
[47] High Purity Alumina (HPA), Product databook, Sumitomo Chemical Co., Ltd.
[48] K. Liang, G. Orange, and G. Fantozzi, "Evaluation by indentation of fracture toughness of ceramic materials," Journal of Materials Science, vol. 25, no. 1, pp. 207-214, 1990.
[49] K. A. Berry and M. P. Harmer, "Effect of MgO solute on microstructure development in Al2O3," Journal of the American Ceramic Society, vol. 69, no. 2, pp. 143-149, 1986.
[50] H. Zhang, Y. Xu, B. Wang, X. Zhang, J. Yang, and K. Niihara, "Effects of heating rate on the microstructure and mechanical properties of rapid vacuum sintered translucent alumina," Ceramics International, vol. 41, no. 9, pp. 12499-12503, 2015.
[51] M. Halmann, A. Frei, and A. Steinfeld, "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, vol. 32, no. 12, pp. 2420-2427, 2007.
[52] J. Mollá, R. Moreno, and A. Ibarra, "Effect of Mg doping on dielectric properties of alumina," Journal of Applied Physics, vol. 80, no. 2, pp. 1028-1032, 1996.
[53] H. Wang, W. Li, C. Ternström, H. Lin, and J. Shi, "Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic," Ceramics International, vol. 39, no. 2, pp. 1583-1586, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw