進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1907201722435500
論文名稱(中文) 促進常壓非熱平衡電漿中潛在治癒傷口機制之特性研究
論文名稱(英文) Enhancement of Selected Species in Non-thermal Atmospheric Pressure Plasma: Implications on Wound Healing Effects
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 105
學期 2
出版年 106
研究生(中文) 林易增
研究生(英文) Yi-Tseng Lin
學號 LA6041030
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 指導教授-向克強
口試委員-談永頤
口試委員-林滄浪
中文關鍵字 非熱平衡電漿  低溫電漿  大氣電漿噴流  傷口治癒  電漿醫療 
英文關鍵字 non-thermal plasma  cold plasma  atmospheric pressure plasma jet(APPJ)  wound healing  plasma medicine 
學科別分類
中文摘要 在大氣壓環境下所產生的非熱平衡電漿由於其電子溫度遠高於氣體溫度的特性,誘發了一連串複雜的電漿化學反應,而產生了許多活躍的帶電粒子、自由基、紫外線和電磁場。應用於細胞與活體組織時,組織之間一般是處於有液態介質圍繞的環境,這時非熱平衡電漿中的這些成分會與液態介質在協同作用下產生更多液相的活躍粒子,這些更開拓了電漿醫療相關的研究。本實驗中,自製的電漿噴流裝置是以介電質材料包覆電極並且放電的方式產生,主要氣體則是選擇惰性氣體氬氣作為工作氣體再混合一定比例的氮氣與氧氣。電性量測方面,藉由量測電漿裝置的電性,再分別以一般定義及Q-V特性圖的方式推估電漿的吸收功率。為了要量測在電漿中的粒子種類與相對濃度,光學放射光譜量測為本次實驗中主要的光學量測方式,所得結果也用來計算激發能量溫度以瞭解電子能量的連續分布,再與所量測出的氣體溫度做比較,驗證此裝置確實有產生活躍粒子的能力。電漿與液相之間的複雜交互作用會使液體成分與特性生改變,其中最常見的改變為被電漿處理過後液體的酸化現象,從酸鹼值量測的結果可得知本實驗中氣相的活躍粒子有部分成功溶入液體當中,並且以有混入一定比例氮氣及氧氣的氬氣電漿其液體酸化效果更為顯著,這暗示了其應用所需相對高濃度的活躍粒子在液相產生。另一點值得注意的是經由比較直接與非直接電漿處理的酸化效果,可以得知電漿處理的效果會隨著與樣品之間距離而改變,此同時表示後放電區域所產生的活躍粒子濃度比例對於大氣空氣成分的比例非常敏感,未來研製以電漿噴流設置為概念的裝置時,控制後放電區域的大氣成分並穩定活躍粒子輸出是必要的。然而,當由低頻交流電所產生的低溫電漿接觸人體時常會有因為相對高的崩潰電壓而產生電擊感,所以使用射頻頻率範圍的脈衝時變交流電來有效率的產生相對高濃度的低溫電漿是當電漿裝置應用於直接人體接觸時常見的方式。
英文摘要 Non-thermal plasmas or cold atmospheric plasmas (CAP) generated in atmospheric pressure possess many promising features of low gas temperature and sequentially complex plasma-induced chemical reactions that are beneficial to the new field namely plasma medicine. The use of the atmospheric pressure plasma jet (APPJ) configuration permitting the direct/indirect treatment in open space makes itself especially promising in comparison with the conventional planar dielectric barrier discharge (DBD) configuration. The aim of this experiment is to enhance selected species in APPJ that might be helpful for the wound healing purpose and to test the performance using basic diagnosis in plasma treated liquid. In this experiment, a homemade APPJ device is driven by sinusoidal voltage with excitation frequency of 25kHz. Argon with admixture of small percentage of nitrogen, oxygen and water vapor were selected to be carrier gas as the main sources of reactive species. Discharge power consumption is calculated by the definition-based and Lissajous figure approaches. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the excited states are characterized by optical emission spectroscopy (OES). Excitation temperature Texc in argon plasmas is calculated to estimate the electron energy distribution. The pH value of plasma-treated liquid was measured to determine the level of acidification. The results show that argon plasmas with small addition of nitrogen and oxygen in this jet configuration are more efficient to generate desired reactive species in terms of OES diagnosis and liquid acidification. However, the risk of electric shock induced by relatively high working voltage under this low excitation frequency raises the concern for safety during direct treatment of human body.
論文目次 ABSTRACT..............I
摘要..............II
ACKNOWLEDGEMENTS..............III
TABLE OF CONTENTS..............IV
LIST OF TABLES..............VI
LIST OF FIGURES..............VII
LIST OF ABBREVIATIONS..............X
CHAPTER 1 INTRODUCTION..............1
1-1 RESEARCH BACKGROUND AND MOTIVATION..............1
1-1-1 Classification of Plasma..............1
1-1-2 Atmospheric Pressure Plasma Jet..............3
1-2 LITERATURE REVIEW..............8
1-2-1 Wound Healing..............8
1-2-2 Comparison of Argon/Air Plasma Jet for Wound Healing..............14
CHAPTER 2 MATERIAL AND METHODS..............17
2-1 INSTALLATION OF APPJ SYSTEM..............17
2-2 EXPERIMENTAL PROCEDURE..............18
2-2-1 Plasma Generation..............18
2-2-2 Plasma Treatment of Liquid..............19
CHAPTER 3 RESULTS AND DISCUSSION..............21
3-1 PLASMA CHARACTERIZATION..............21
3-1-1 Plasma Visualization..............21
3-1-2 Electrical Characteristics..............25
3-1-3 Identification of Reactive Species by OES Measurements..............33
3-2 PLASMA-LIQUID INTERACTION..............47
3-2-1 pH Measurement of Plasma-treated Liquid..............47
CHAPTER 4 SUMMARY AND DISCUSSION..............53
REFERENCES..............55
參考文獻 [1] Lu, X., M. Laroussi, and V. Puech. "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets." Plasma Sources Science and Technology 21.3 (2012): 034005.
[2] Walsh, James L., and Michael G. Kong. "Contrasting characteristics of linear-field and cross-field atmospheric plasma jets." Applied Physics Letters 93.11 (2008): 111501.
[3] Winter, J., R. Brandenburg, and K. D. Weltmann. "Atmospheric pressure plasma jets: an overview of devices and new directions." Plasma Sources Science and Technology 24.6 (2015): 064001.
[4] Graves, David B. "Reactive species from cold atmospheric plasma: implications for cancer therapy." Plasma Processes And Polymers 11.12 (2014): 1120-1127.
[5] Habib, Mariam, Timothy L. Hottel, and Liang Hong. "Antimicrobial effects of non-thermal atmospheric plasma as a novel root canal disinfectant." Clinical Plasma Medicine 2.1 (2014): 17-21.
[6] Claiborne, D., et al. "Low‐temperature atmospheric pressure plasma enhanced tooth whitening: the next‐generation technology." International journal of dental hygiene 12.2 (2014): 108-114.
[7] Daeschlein, Georg, et al. "Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment." Plasma Processes and Polymers 7.3‐4 (2010): 224-230.
[8] Manner, Hendrik. "Argon plasma coagulation therapy." Current opinion in gastroenterology 24.5 (2008): 612-616.
[9] Shah, Udayan K., and Brian Dunham. "Coblation for tonsillectomy: an evidence-based review." ORL 69.6 (2007): 349-357.
[10] Girard‐Lauriault, Pierre‐Luc, et al. "Atmospheric Pressure Deposition of Micropatterne Nitrogen‐Rich Plasma‐Polymer Films for Tissue Engineering." Plasma Processes and Polymers 2.3 (2005): 263-270.
[11] Fridman, Alexander, and Gary Friedman. Plasma medicine. John Wiley & Sons, 2012.
[12] Guo, S. al, and Luisa A. DiPietro. "Factors affecting wound healing." Journal of dental research 89.3 (2010): 219-229.
[13] Haertel, Beate, et al. "Non-thermal atmospheric-pressure plasma possible application in wound healing." Biomolecules & therapeutics 22.6 (2014): 477-490.
[14] Kim, Paul Y., et al. "Bacterial inactivation of wound infection in a human skin model by liquid-phase discharge plasma." PLoS One 6.8 (2011): e24104.
[15] Matthes, Rutger, et al. "Pilot-study on the influence of carrier gas and plasma application (open resp. delimited) modifications on physical plasma and its antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus." GMS Krankenhaushygiene interdisziplinär 7.1 (2012).
[16] Daeschlein, G., et al. "Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma." Journal of Hospital Infection 81.3 (2012): 177-183.
[17] Fricke, Katja, et al. "Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms." PloS one 7.8 (2012): e42539.
[18] Brehmer, F., et al. "Alleviation of chronic venous leg ulcers with a hand‐held dielectric barrier discharge plasma generator (PlasmaDerm® VU‐2010): results of a monocentric, two‐armed, open, prospective, randomized and controlled trial (NCT01415622)." Journal of the European Academy of Dermatology and Venereology 29.1 (2015): 148-155.
[19] Weltmann, Klaus-Dieter, and Thomas von Woedtke. "Campus PlasmaMed—from basic research to clinical proof." IEEE Transactions on Plasma Science 39.4 (2011): 1015-1025.
[20] Bruggeman, P. J., et al. "Plasma–liquid interactions: a review and roadmap." Plasma sources science and technology 25.5 (2016): 053002.
[21] Jablonowski, Helena, and Thomas von Woedtke. "Research on plasma medicine-relevant plasma–liquid interaction: what happened in the past five years?." Clinical Plasma Medicine 3.2 (2015): 42-52.
[22] Butler, Anthony R., and Martin Feelisch. "Therapeutic uses of inorganic nitrite and nitrate." Circulation 117.16 (2008): 2151-2159.
[23] Suschek, Christoph V., and Christian Opländer. "The application of cold atmospheric plasma in medicine: the potential role of nitric oxide in plasma-induced effects." Clinical Plasma Medicine 4.1 (2016): 1-8.
[24] Soneja, Amit, Magdalena Drews, and Tadeusz Malinski. "Role of nitric oxide, nitroxidative and oxidative stress in wound healing." Pharmacological Reports 57 (2005): 108.
[25] Fridman, Gregory, et al. "Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air." Plasma Chemistry and Plasma Processing 26.4 (2006): 425-442.
[26] Kim, Min-Ho, et al. "Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging." Journal of Investigative Dermatology 128.7 (2008): 1812-1820.
[27] Ranjan, Priya, et al. "Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells." Antioxidants & redox signaling 8.9-10 (2006): 1447-1459.
[28] Witte, M. B., T. Kiyama, and A. Barbul. "Nitric oxide enhances experimental wound healing in diabetes." British journal of surgery 89.12 (2002): 1594-1601.
[29] Liu, Xiaoping, et al. "Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes." Proceedings of the National Academy of Sciences 95.5 (1998): 2175-2179.
[30] Witte, Maria B., and Adrian Barbul. "Role of nitric oxide in wound repair." The American Journal of Surgery 183.4 (2002): 406-412.
[31] Kolb, Juergen F., et al. "Cold atmospheric pressure air plasma jet for medical applications." Applied Physics Letters 92.24 (2008): 241501.
[32] Shekhter, A. B., et al. "Experimental and clinical validation of plasmadynamic therapy of wounds with nitric oxide." Bulletin of Experimental Biology and Medicine 126.2 (1998): 829-834.
[33] Pekshev, A. V. "Use of a novel biological factor-exogenic nitrogen oxide-in surgical treatment of paradontitis." Stomatology 1 (2001): 80-83.
[34] Laroussi, Mounir, and Xu Lu. "Room-temperature atmospheric pressure plasma plume for biomedical applications." Applied Physics Letters 87.11 (2005): 113902.
[35] Weltmann, Klaus Dieter, et al. "Atmospheric-pressure plasma sources: prospective tools for plasma medicine." Pure and Applied Chemistry 82.6 (2010): 1223-1237.
[36] Bayliss, D. L., et al. "Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet." New Journal of Physics 11.11 (2009): 115024.
[37] Shekhter, Anatoly B., et al. "Beneficial effect of gaseous nitric oxide on the healing of skin wounds." Nitric oxide 12.4 (2005): 210-219.
[38] Fridman, Gregory, et al. "Applied plasma medicine." Plasma Processes and Polymers 5.6 (2008): 503-533.
[39] Nosenko, Tetyana, et al. "Argon plasma vs. Air plasma: Characterization and Interaction with Biological Systems." Plasma Science, 2010 Abstracts IEEE International Conference on. IEEE, 2010.
[40] Moisan, M., et al. "Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms." International journal of Pharmaceutics 226.1 (2001): 1-21.
[41] Oehmigen, K., et al. "The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids." Plasma Processes and Polymers 7.3‐4 (2010): 250-257.
[42] Chiang, M. H., et al. "Inactivation of E. coli and B. subtilis by a parallel-plate dielectric barrier discharge jet." Surface and Coatings Technology 204.21 (2010): 3729-3737.
[43] Hołub, Marcin. "On the measurement of plasma power in atmospheric pressure DBD plasma reactors." International Journal of Applied Electromagnetics and Mechanics 39.1-4 (2012): 81-87.
[44] Hofmann, S., et al. "Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets." Plasma Sources Science and Technology 20.6 (2011): 065010.
[45] Sobota, A., O. Guaitella, and A. Rousseau. "The influence of the geometry and electrical characteristics on the formation of the atmospheric pressure plasma jet." Plasma Sources Science and Technology 23.2 (2014): 025016.
[46] Wagner, H-E., et al. "The barrier discharge: basic properties and applications to surface treatment." Vacuum 71.3 (2003): 417-436.
[47] Weltmann, Klaus Dieter, et al. "Atmospheric-pressure plasma sources: prospective tools for plasma medicine." Pure and Applied Chemistry 82.6 (2010): 1223-1237.
[48] Kriegseis, Jochen, et al. "Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators." Journal of Electrostatics 69.4 (2011): 302-312.
[49] Fantz, U. "Basics of plasma spectroscopy." Plasma sources science and technology 15.4 (2006): S137.
[50] Griem, Hans R. Principles of plasma spectroscopy. Vol. 2. Cambridge University Press, 2005.
[51] Ono, Ryo. "Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma." Journal of Physics D: Applied Physics 49.8 (2016): 083001.
[52] Nikiforov, A. Yu, et al. "Electron density measurement in atmospheric pressure plasma jets: Stark broadening of hydrogenated and non-hydrogenated lines." Plasma Sources Science and Technology 24.3 (2015): 034001.
[53] Crintea, D. L., et al. "Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering." Journal of Physics D: Applied Physics 42.4 (2009): 045208.
[54] Dilecce, Giorgio. "Optical spectroscopy diagnostics of discharges at atmospheric pressure." Plasma Sources Science and Technology 23.1 (2014): 015011.
[55] Pearse, Reginald William Blake, and Alfred Gordon Gaydon. Identification of molecular spectra. Chapman and Hall, 1976.
[56] Brandenburg, R., et al. "Antimicrobial Treatment of Heat Sensitive Materials by Means of Atmospheric Pressure Rf‐Driven Plasma Jet." Contributions to Plasma Physics 47.1‐2 (2007): 72-79.
[57] Sarani, Abdollah, Anton Yu Nikiforov, and Christophe Leys. "Atmospheric pressure plasma jet in Ar and Ar/H 2 O mixtures: Optical emission spectroscopy and temperature measurements." Physics of Plasmas 17.6 (2010): 063504.
[58] Ralchenko, Yu, A. E. Kramida, and J. Reader. "NIST atomic spectra database (version 3.1. 5)." (2008): 28.
[59] Bruggeman, Peter, et al. "Electronic quenching of OH (A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH (A–X) emission." Plasma Sources Science and Technology 19.1 (2009): 015016.
[60] Winter, Jörn, et al. "Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells." Journal of Physics D: Applied Physics 46.29 (2013): 295401.
[61] Dilecce, G., and S. De Benedictis. "Experimental studies on elementary kinetics in N2-O2 pulsed discharges." Plasma Sources Science and Technology 8.2 (1999): 266.
[62] Reuter, Stephan, et al. "Controlling the ambient air affected reactive species composition in the effluent of an argon plasma jet." IEEE Transactions on Plasma Science 40.11 (2012): 2788-2794.
[63] Joh, Hea Min, et al. "Electrical and optical characterization of atmospheric-pressure helium plasma jets generated with a pin electrode: Effects of the electrode material, ground ring electrode, and nozzle shape." IEEE Transactions on Plasma Science 42.12 (2014): 3656-3667.
[64] Nikiforov, Anton, et al. "Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio) plasma jet." Plasma Sources Science and Technology 23.1 (2014): 015015.
[65] Park, Hye Sun, et al. "Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode." Physics of plasmas 17.3 (2010): 033502.
[66] Pipa, A. V., et al. "Controlling the NO production of an atmospheric pressure plasma jet." Journal of Physics D: Applied Physics 45.8 (2012): 085201.
[67] Liu, Da Wei, Felipe Iza, and Michael G. Kong. "Evolution of Atmospheric‐Pressure RF Plasmas as the Excitation Frequency Increases." Plasma Processes and Polymers 6.6‐7 (2009): 446-450.
[68] Meichsner, Jurgen, et al., eds. Nonthermal plasma chemistry and physics. CRC Press, 2012.
[69] Bruggeman, P. J., et al. "Gas temperature determination from rotational lines in non-equilibrium plasmas: a review." Plasma Sources Science and Technology 23.2 (2014): 023001.
[70] Darwiche S, Nikravech M, Awamat S, Morvan D and Amouroux J 2007 Optical emission spectroscopic investigation of hydrogen plasma used for modification of electrical properties of multi-crystalline silicon J. Phys. D: Appl. Phys. 40 1030–6
[71] Balcon, Nicolas, Ana Aanesland, and Rod Boswell. "Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon." Plasma Sources Science and Technology 16.2 (2007): 217.
[72] Capitelli, M., et al. "Elementary processes and kinetics of H2 plasmas for different technological applications." Plasma sources science & technology 11.3A (2002): A7-A25.
[73] van der Mullen J A M 1990 Excitation equilibria in plasmas; a classification Phys. Rep. 191 190–220
[74] Mariotti, Davide, et al. "Gas temperature and electron temperature measurements by emission spectroscopy for an atmospheric microplasma." Journal of Applied Physics 101.1 (2007): 013307.
[75] Mariotti, Davide, et al. "Method to determine argon metastable number density and plasma electron temperature from spectral emission originating from four 4 p argon levels." Applied physics letters 89.20 (2006): 201502.
[76] Yanguas-Gil, Alejandro, José Cotrino, and Agustín R. González-Elipe. "Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: a critical approach." Journal of applied physics 99.3 (2006): 033104.
[77]Staack, David, et al. "DC normal glow discharges in atmospheric pressure atomic and molecular gases." Plasma Sources Science and Technology 17.2 (2008): 025013.
[78] Gordillo-Vázquez, Francisco J., Manuel Camero, and C. Gomez-Aleixandre. "Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H2/CH4 plasmas used for the synthesis of nanocarbon structures." Plasma Sources Science and Technology 15.1 (2005): 42.
[79] Reuter, Stephan, et al. "From RONS to ROS: tailoring plasma jet treatment of skin cells." IEEE Transactions on Plasma Science 40.11 (2012): 2986-2993.
[80] Reuter, Stephan, et al. "Controlling the ambient air affected reactive species composition in the effluent of an argon plasma jet." IEEE Transactions on Plasma Science 40.11 (2012): 2788-2794.
[81] Bekeschus, Sander, et al. "Nitrogen shielding of an argon plasma jet and its effects on human immune cells." IEEE Transactions on Plasma Science 43.3 (2015): 776-781.
[82] Wende, Kristian, et al. "Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet." Biointerphases 10.2 (2015): 029518.
[83] Schmidt-Bleker, Ansgar, et al. "On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device." Plasma Sources Science and Technology 25.1 (2015): 015005.
[84] Norberg, Seth A., et al. "Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid." Journal of Physics D: Applied Physics 47.47 (2014): 475203.
[85] Tresp, Helena, et al. "Effects of atmosphere composition and liquid type on plasma-generated reactive species in biologically relevant solutions." Plasma Medicine 3.1-2 (2013).
[86] Rumbach, Paul, et al. "Plasma-liquid interactions: Separating electrolytic reactions from plasma/gas phase reactions." Proc. ESA Annual Meeting on Electrostatics. 2013.
[87] Dünnbier, M., et al. "Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry." Journal of Physics D: Applied Physics 46.43 (2013): 435203.
[88] Gentile, Ann C., and Mark J. Kushner. "Reaction chemistry and optimization of plasma remediation of N x O y from gas streams." Journal of applied physics 78.3 (1995): 2074-2085.
[89] Hill, S. C., and L. Douglas Smoot. "Modeling of nitrogen oxides formation and destruction in combustion systems." Progress in energy and combustion science 26.4 (2000): 417-458.
[90] Fridman, Alexander. Plasma chemistry. Cambridge university press, 2008.
[91] Zeldovich, Y. A., D. Frank-Kamenetskii, and P. Sadovnikov. Oxidation of nitrogen in combustion. Publishing House of the Acad of Sciences of USSR, 1947.
[92] Iseni, Sylvain, et al. "Nitrogen metastable (N2 (A 3 Σ u+)) in a cold argon atmospheric pressure plasma jet: shielding and gas composition." Applied Physics Letters 108.18 (2016): 184101.
[93] Van Gaens, W., et al. "Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure." New Journal of Physics 17.3 (2015): 033003.
[94] Van Gaens, W., P. J. Bruggeman, and A. Bogaerts. "Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet." New Journal of Physics 16.6 (2014): 063054.
[95] Van Gessel, A. F. H., K. M. J. Alards, and P. J. Bruggeman. "NO production in an RF plasma jet at atmospheric pressure." Journal of Physics D: Applied Physics 46.26 (2013): 265202.
[96] Liu, Chih-Tung, et al. "Atomic oxygen and hydroxyl radical generation in round helium-based atmospheric-pressure plasma jets by various electrode arrangements and its application in sterilizing streptococcus mutans." IEEE Transactions on Plasma Science 42.12 (2014): 3830-3836.
[97] Walsh, James L., et al. "Atmospheric-pressure gas breakdown from 2 to 100 MHz." Applied Physics Letters 93.22 (2008): 221505.
[98] Seo, Y. S., et al. "A study on characterization of atmospheric pressure plasma jets according to the driving frequency for biomedical applications." Thin Solid Films 519.20 (2011): 7071-7078.
[99] Zhang, Shiqiang, et al. "Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms." Journal of Physics D: Applied Physics 46.20 (2013): 205202.
[100] Kim, Dan Bee, et al. "Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration." Applied Physics Letters 91.15 (2007): 151502.
[101] Weltmann, K-D., and Th Von Woedtke. "Basic requirements for plasma sources in medicine." The European Physical Journal Applied Physics 55.1 (2011): 13807.
[102] Isbary, G., et al. "A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients." British Journal of Dermatology 163.1 (2010): 78-82.
[103] Shekhter, Anatoly B., et al. "Beneficial effect of gaseous nitric oxide on the healing of skin wounds." Nitric oxide 12.4 (2005): 210-219.
[104] Bekeschus, Sander, et al. "The plasma jet kINPen–A powerful tool for wound healing." Clinical Plasma Medicine 4.1 (2016): 19-28.]
[105] Tian, Wei, and Mark J. Kushner. "Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue." Journal of Physics D: Applied Physics 47.16 (2014): 165201.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw