進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1907201622522500
論文名稱(中文) 從成本考量下探討不良率管制圖之最佳經濟集批量:以觸控面板產業為例
論文名稱(英文) The economic batch size for fraction defective control chart with a case study of the touch panel industry
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 104
學期 2
出版年 105
研究生(中文) 王翌靜
研究生(英文) I-Ching Wang
學號 R37031299
學位類別 碩士
語文別 中文
論文頁數 44頁
口試委員 指導教授-張裕清
口試委員-王泰裕
口試委員-蔡青志
口試委員-胡政宏
中文關鍵字 不合格率管制圖  成本模式  經濟設計管制圖  適應性管制圖  經濟集批量 
英文關鍵字 fraction defective control chart  Cost model  Economic design control charts  adaptive control charts  economic batch size 
學科別分類
中文摘要 要確定產品的好壞大多靠檢驗來確認品質。剛導入產品時採小量生產可以用全檢來確保產品品質,伴隨著大量生產的時候檢驗產品的品質變的更重要。但是大量生產之後如果每生產一片就檢查一次會增加過多的處理成本,受限於成本的考量會採用集批方式進行抽檢。雖然全檢是最能夠確保產品品質的方法,但是沒有經過全檢而改採用抽檢方式就出貨,異常發生時所造成的損失比在公司內部發現異常其造成的損失成本將提高許多。集批抽檢的方式會依照每個公司產品尺寸、生產成本的考量而選擇不同的集批量,此集批量會有固定的抽樣數量,以這抽樣數量的品質來確認是否有問題。如發現任何不良會依照允收水準進行判退重工、報廢等處理。抽檢集批量的監控主要是要能很快的反應製程產生變異並得到改善降低生產損失。所以,從成本考量下探討集批的限制,如果不是用全檢的方式進行,依照種種生產因素多少的集批量才是最佳經濟集批量且是最合理的。
本研究使用不合格率管制圖以生產成本最低為目標的概念來決定最佳經濟集批量。建立一個跟管制圖有關係的成本函數,此成本函數包含抽樣檢驗的成本、調查修正的成本、生產不良品的成本及重工檢查與修復成本。再依照管制圖建立一個模型,用數學方式去求解最佳集批量,為了證明所建立的管制圖是否正確,選擇一個實際案例將成本函數代入實際值進行數值模擬驗證。結果顯示從成本函數得到之最佳經濟集批量與實際案例所使用之集批量非常接近,經由數值模擬結果可以知道個案公司如採用全檢時其檢驗成本非常高,檢驗成本隨著集批量的增加而減少,直到接近最佳經濟集批量時成本開始漸趨穩定。
英文摘要 In cases with small productions of products, conducting a full inspection is a way to ensure product quality. However, in cases with mass productions, this method would lead to extremely high costs as every piece of product must be inspected. Usually, when costs are taken into consideration, a batch sampling inspection would be conducted instead. The batch size for batch sampling of products depends on the measurements and manufacturing costs of the products. The purpose of monitoring the batch sampling inspection is to make immediate responses to manufacturing process variations and reduce manufacturing loss caused. Therefore, this study aims to explore the limitations of batch sampling from the perspective of costs and the reasonable and optimal economic batch size in cases where a full inspection is not applicable.
This study applies a fraction defective control chart to determine the optimal economic batch size with the goal of minimizing the production cost. This study uses a cost function related to the control chart which includes sampling inspection cost, investigation and modification cost, defective product cost, and rework checking and repairing cost. Then, based on the control chart, a model is built. The optimal batch size is obtained using mathematical methods. In order to find out whether the purposedmethodis correct, the cost function is applied to a real case and actual values are used for numerical simulation verification. The result shows that the optimal economic batch size obtained using the cost function is very close to that of the real case. According to the numerical simulation result, if the case company adopted the full inspection method, the cost would be very high. The inspection cost reduces as the batch size increases until the optimal economic batch size is reached, then the trend becomes stable.
論文目次 摘要 I
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3問題描述 3
1.4研究目的 5
第二章 文獻探討 7
2.1集批量 7
2.2管制圖的種類 8
2.2.1不合格率管制圖(p管制圖) 9
2.2.2累積和管制圖 (CUSUM ) 10
2.2.3指數加權移動平均管制圖 (EWMA ) 11
2.3經濟性設計 12
2.3.1成本模式 13
2.3.2經濟設計管制圖 14
2.3.3適應性管制圖 15
2.4小結 16
第三章 研究方法與步驟 17
3.1研究問題描述 17
3.2符號設定及研究假設 17
3.2.1相關變數/參數/符號定義 17
3.2.2研究假設 18
3.3管制圖建立 19
3.3.1成本函數 19
3.3.2參數對應實際問題的定義 21
3.4小結 23
第四章 數值模擬與結果分析 24
4.1管制圖之參數設定 25
4.2最佳批量求解 29
4.3管制圖模擬流程 32
4.4結果分析 35
4.4.1最佳集批量模擬結果 35
第五章 結論與未來研究建議 38
5.1未來研究建議 38
參考文獻 40
參考文獻 Alexander, C., & Bo, B. (2006). An EWMA Solution to Detect Shifts in a Bernoulli Process in an Out‐of‐control Environment. Quality and Reliability Engineering International, 22(4), 419-428.
Bather, J. A. (1963). Control charts and the minimization of costs. Journal of the Royal Statistical Society. Series B (Methodological), 49-80.
Baud-Lavigne, B., Bassetto, S., & Penz, B. (2010). A broader view of the economic design of the X-bar chart in the semiconductor industry. International Journal of Production Research, 48(19), 5843-5857.
Bourke, P. D. (1991). Detecting a shift in fraction nonconforming using run-length control charts with 100% inspection. Journal of Quality Technology,23(3), 225-238.
Carter, P. L. (1972). A Bayesian approach to quality control. Management Science, 18(11), 647-655.
Chang, T. C., & Gan, F. F. (2001). Cumulative sum charts for high yield processes. Statistica Sinica, 11(3), 791-806.
Chen, Y. K. (2004). Economic design of X control charts for non-normal data using variable sampling policy. International Journal of Production Economics,92(1), 61-74.
Costa, A. F. (1999). Joint X and R charts with variable sample sizes and sampling intervals. Journal of Quality Technology, 31(4), 387.
Crowder, S. V. (1992). An SPC model for short production runs: minimizing expected cost. Technometrics, 34(1), 64-73.
Das, T. K., JAIN, V., & GOSAVI, A. (1997). Economic design of dual-sampling-interval policies for X charts with and without run rules. IIE transactions, 29(6), 497-506.
Diponegoro, A., & Sarker, B. R. (2002). Determining manufacturing batch sizes for a lumpy delivery system with trend demand. International Journal of Production Economics, 77(2), 131-143.
Duncan, A. J. (1956). The economic design of X ̅ charts used to maintain current control of a process. Journal of the American Statistical Association,51(274), 228-242.
Eilon, S. (1959). Economic batch-size determination for multi-product scheduling. OR, 217-227.
Gan, F. F. (1990). Monitoring observations generated from a binomial distribution using modified exponentially weighted moving average control chart. Journal of Statistical Computation and Simulation, 37(1-2), 45-60.
Gan, F. F. (1993). An optimal design of CUSUM control charts for binomial counts. Journal of Applied Statistics, 20(4), 445-460.
Gan, F. F. (1994). Design of optimal exponential CUSUM control charts.Journal of Quality Technology, 26(2), 109-124.
Gupta, T., & Chakraborty, S. (1984). Looping in a multistage production system. The International Journal Of Production Research, 22(2), 299-311.
Hawkins, D. M. & Olwell, D. H. (1998). Cumulative sum charts and charting for quality improvement , Springer Verlag : New York.
Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality Technology, 18(4), 203-210.
Khan, L. R., & Sarker, R. A. (2002). An optimal batch size for a JIT manufacturing system. Computers & Industrial Engineering, 42(2), 127-136.
Koo, T. Y., & Case, K. E. (1990). Economic design of X-bar control charts for use in monitoring continuous flow processes. International Journal of Production Research, 28(11), 2001-2011.
Li, C., Su, Q., & Xie, M. (2015). Economic modelling for statistical process control subject to a general quality deterioration. International Journal of Production Research, 1-18.
Liu, J. J., & Yang, P. (1996). Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs. European journal of operational research, 91(3), 517-527.
Liou, M. J., Tseng, S. T., & Lin, T. M. (1994). The effects of inspection errors to the imperfect EMQ model. IIE transactions, 26(2), 42-51.
Lorenzen, T. J. & Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics, 28(1), 3-10.
Lucas, J. M. &Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: properties andenhancements. Technometrics, 32(1), 1-12.
Montgomery, D. C. (2009). Statistical Quality Control: A Modern Introduction, 6^thed, John Wiley &Sons : New York.
Montgomery, D. C., Heikes, R. G., & Mance, J. F. (1975). Economic design of fraction defective control charts. Management Science, 21(11), 1272-1284.
Nenes, G. & Tagaras, G. (2007). An economic comparison of CUSUM and Shewhart charts. IIE Transactions, 40(2), 133-146.
Ojha, D., Sarker, B. R., & Biswas, P. (2007). An optimal batch size for an imperfect production system with quality assurance and rework. International Journal of Production Research, 45(14), 3191-3214.
Page, E. S. (1954).Continuous inspection schemes. Biometrika, 100-115.
Park, C., & Reynolds Jr, M. R. (1999). Economic design of a variable sampling rate X chart. Journal of Quality Technology, 31(4), 427.
Reynolds, M. R., & Arnold, J. C. (2001). EWMA control charts with variable sample sizes and variable sampling intervals. IIE Transactions, 33(6), 511-530.
Reynolds, M. R., & Stoumbos, Z. G. (1999). A CUSUM chart for monitoring a proportion when inspecting continuously. Journal of Quality Technology,31(1), 87.
Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250.
Sarker, R. A., & Khan, L. R. (1999). An optimal batch size for a production system operating under periodic delivery policy. Computers & Industrial Engineering, 37(4), 711-730.
Sarker, B. R., & Parija, G. R. (1996). Optimal batch size and raw material ordering policy for a production system with a fixed-interval, lumpy demand delivery system. European Journal of Operational Research, 89(3), 593-608.
Serel, D. A. & Moskowitz, H. (2008). Joint economic design of EWMA control charts for mean and variance. European Journal of Operational Research,184(1), 157-168.
Szarka, J. L., & Woodall, W. H. (2011). A review and perspective on surveillance of Bernoulli processes. Quality and Reliability Engineering International, 27(6), 735-752.
Tagaras, G. (1998). A survey of recent developments in the design of adaptive control charts. Journal of Quality Technology, 30(3), 212.
Taylor III, H. M. (1965). Markovian sequential replacement processes. The Annals of Mathematical Statistics, 1677-1694.
Taylor, H. M. (1967). Statistical control of a Gaussian process. Technometrics,9(1), 29-41.
Yeh, A. B., Mcgrath, R. N., Sembower, M. A., & Shen, Q. (2008). EWMA control charts for monitoring high-yield processes based on non-transformed observations. International Journal of Production Research, 46(20), 5679-5699.
Wu, Z., Liu, Y., He, Z., & Khoo, M. B. (2010). A cumulative sum scheme for monitoring frequency and size of an event. Quality and Reliability Engineering International, 26(6), 541-554.
廖乃毅,李佩熹,童超塵(2008)。多重抽樣平均數管制圖的經濟性設計。品質學報,Vol. 15, No. 4,311-319.
林裕章,周昭宇(2004)。適應性 (平均值) X 管制圖變動管制參數之評估。管理學報, 21(3),375-389.
吳文祥,王瑛玫,黃婉翠,王惠蓉,馮介凡(2012)。運用管制圖進行藥物異常事件監控與改善。臺灣臨床藥學雜誌, 20(4),301-314.
羅淑娟,柯秀奎,林晶璟 (2008) 。綱路服務品質探勘與管制。交大管理學報,28(1),251-268.
宋泉旭。(2002,July 15)。TFT-LCD產業基礎原料事業的投資契機,Retrieved 27 Sept 2015。http://www.taifer.com.tw/taifer/tf/043007/49.htm(accessed).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw