進階搜尋


下載電子全文  
系統識別號 U0026-1907201613284700
論文名稱(中文) FC-PBGA覆晶球柵陣列組合體之無鉛錫球可靠度分析
論文名稱(英文) Reliability Analysis of FC-PBGA Lead Free Solder Ball
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 林政勳
研究生(英文) Cheng-Hsun Lin
學號 n16031184
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-吳俊煌
口試委員-朱聖浩
口試委員-顏義文
中文關鍵字 覆晶封裝  有限元素分析  無鉛錫球  含鉛錫球  疲勞壽命  錫球間距  錫球大小 
英文關鍵字 FC-PBGA  finite element method  lead-free solder ball  lead solder ball  fatigue life  pitch spacing  solder ball size 
學科別分類
中文摘要 本文以有限元素分析軟體ANSYS15.0來模擬在FC-PBGA中錫球間距及錫球尺寸縮小,在加速溫度循環中無鉛錫球及有鉛錫球熱機械行為與疲勞壽命。
在本模擬中,首先利用ANSYS建立模型,並設定各元件材料參數完成網格化,之後施以溫度循環負載測試,觀察錫球在負載過程中的塑性應變變化(plastic strain range),並將結果代入Coffin-Manson疲勞壽命預測公式來探討錫球的可靠度。
結果與討論中探討錫球(96.5Sn3.5Ag)的分析結果。首先觀察各個錫球的應力、應變,找出發生最大von Mises應變的關鍵錫球,再分析關鍵錫球於熱負載過程中應力與應變的變化,藉由Coffin-Manson equation,計算出含鉛錫球疲勞壽命,分析結果不同錫球材料,本文以無鉛錫球(96.5Sn3.5Ag)、無鉛錫球(95.5Sn3.8Ag0.7Cu)及有鉛錫球(60Sn40Pb)考慮三種不同型組合體對錫球疲勞壽命的影響,以及不同高分子組件與散熱組件的參數設計對錫球疲勞壽命的影響。本文藉由分析結果得知哪些因素對FC-PBGA錫球疲勞壽命影響顯著。
最後為無鉛錫球在錫球間距及錫球尺寸縮小下的比較,觀察不同無鉛材料的關鍵錫球在整個熱負載過程中的應力、應變,並比較含鉛與無鉛錫球的疲勞壽命。
英文摘要 This master's thesis uses finite element software ANSYS15.0 to analyze the Filp-Chip Plastic Ball Grid Array packaging (FC-PBGA) which minify substrate and solder ball under accelerated thermal cycling loading. We will observe the thermal mechanical behaviors of the solder balls and research the fatigue life.
In this simulation, we use ANSYS to establish the FC-PBGA model, and apply different material parameters in components to finish meshing. After that, we applied thermal Cycling Test (TCT) loads and observed the plastic strain range of the solder ball during TCT loads. Therefore, we used the Coffin-Manson equation to predict the fatigue life and reliability of the solder ball.
論文目次 中文摘要 I
Extended Abstract II
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
符號說明 XIV
第一章 緒論 1
1-1前言 1
1.2 FC-PBGA簡介 2
1.2.1 BGA 2
1.2.2 FC(Flip Chip) 3
1.3 研究動機與目的 3
1.4 文獻回顧 4
1.5 本文架構 5
第二章 理論基礎分析 6
2.1 彈性與塑性材料之行為 6
2.1.1 彈性應力應變與熱應變之關係 6
2.1.2 塑性應力應變之關係 9
2.1.3 降伏準則 11
2.2 非線性收斂準則 11
2.2.1 牛頓-瑞佛森法 12
2.2.2擬牛頓法 13
2.2.3線性剛度迭代法 14
2.3 潛變模式建構 14
2.4 亞蘭德模型(Anand’s model) 15
2.5 溫度循環測試 17
2.6封裝之熱傳與散熱分析 18
2.7疲勞破壞可靠度評估 19
2.8 疲勞壽命預測 19
第三章 模型建立與分析 22
3.1 構型基本假設 22
3.2 ANSYS分析架構 23
3.3 前處理(Pre-Processing) 24
3.3.1 建立實體模型(Solid modeling) 24
3.3.2 定義出各元件包括的體積 36
3.3.3 網格劃分(Mesh) 38
3.4求解(Solving): 42
3.4.1 設定系統邊界條件 42
3.4.2 設定系統之負載 43
3.4.3 進行求解 43
3.5 後處理(Post-processing): 44
3.5.1 一般後處理 44
3.5.2 歷時後處理 44
第四章 結果與討論 45
4.1 錫球間距和錫球變化分析結果 47
4.1.1 錫球間距及錫球大小分析 47
4.1.2 錫球間距改變於熱負載過程中變化 50
4.1.3 錫球大小改變 52
4.1.4 錫球大小改變於熱負載過程中變化 54
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望: 59
參考文獻 60
參考文獻 [1] Chih Tang Peng, Chang Ming Liu, Ji Cheng Lin, Hsien Chie Cheng, Kuo Ning Chiang, “Reliability analysis and design for the fine-pitch flip chip BGA packaging”, IEEE Transactions on Components and Packaging Technologies , Vol. 27, No. 4, Dec. 2004 ,pp.684-693, 2004.
[2] Tong Yan Tee, Sivakumar, K., and Do-Bento-Vieira, A.,“ Board Level Solder Joint Reliability Modeling of LFBGA Package,” Proceedings of 2nd Electronic Materials and Packaging (EMAP) Conference, Hong Kong, pp.51-54, 2000.
[3]李國龍、張高華、劉后鴻、潘文峰,“田口方法對薄形細間距球柵陣列封裝之最佳化設計”,技術學刊,第二十八卷,第一期,頁15-23,2013年。
[4] A. Schubert, R. Dudek, H. Walter, E. Jung, A. Gollhardt, B. Michel, and H. Reichl, ”Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints”, IEEE Electronic Component and Technology Conference, pp.1246-1255, 2002.
[5] R. Dudek, H. Walter, R. Doering, and B. Michel, “Thermal fatigue modelling for SnAgCu and SnPb solder joints”, IEEE Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, pp.557-564, 2004.
[6] K. Tunga, K. Kacker, R.V. Pucha, S.K. Sitaraman, “Accelerated thermal cycling: is it different for lead-free solder? ” , IEEE Electronic Components and Technology Conference, Vol.2, pp.1579-1585, 2004.
[7] Q. Yan, L. Rex, R.G. Hamid, S. Polina, K.S. Jan, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints”, Microelectronics Reliability, Vol.46, pp.574-588, 2006.
[8] G. Z. Wang, Z. N. Cheng, K. Becker, J. Wilde, “Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys”, Journal of Electronic Packaging, Vol.123, pp.247-253, 1998.
[9]K.M.Chen, “Die Crack Study for 40nm Lead Free Flip Chip Packaging”, United Microelectronic Co.,No.3,pp.730 - 733,2009.
[10] N. E. Dowing, “Mechanical Behavior of Materials”, Prentice-Hall, N.J., pp. 269–270,1993.
[11] John Lau, Pang, D.Y.R.Chong, and T. H. Low, “thermal Cycling Analysis of Flip-Chip Solder Joint Reliability”, IEEE Transactions on Component and Package Technologies, Vol. 24, No. 4,pp. 705 -712, 2001.
[12] L. Anand, “Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature”, Transactions of The ASME, Vol.104, pp.12-17, 1982.
[13] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation”, IEEE Electronic Components and Technology Conference, pp. 1048-1058, 2000.
[14] M. Amagai, M. Watanabe , M. Omiya, K. Kishimoto, T. Shibuya, “Mechanical characterization of Sn–Ag-based lead-free solders”, Microelectronics Reliability, Vol.42, pp.951-966, 2002.
[15] J. Zhu, “Effects of Anchor Pads in Micro-Scale BGA”, IEEE Electronic Components and Technology Conference, pp. 1731-1736, 2000.
[16] B. Rodgers, B. Flood, J. Punch, F. Waldron, “Experimental Determinatioio and Finite Element Model Validation of the Anand Viscoplasticity Model Constants for SnAgCu”, IEEE Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 490 – 496, 2005.
[17] Temperature Cycling, “JESD22 A104-D”, JEDEC, pp. 1–18, 2009.
[18] H. Cui , “Accelerated Temperature Cycle Test and Coffin-Manson Model for Electronic Packaging”, in Proc. Reliability Maintainability Symp.,Jan 24–27, pp. 556–560, 2005.
[19] Xiang Qiu, Jun Wang, “Study on Heat Dissipation in Package On Package (POP) ”, 11th International Conference on Electronic Packaging Technology & High Density Packaging, pp. 753–757,2010.
[20] L.F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal,” Trans. ASME, Vol. 76, pp. 931-950, 1954.
[21] S.S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, pp. 9-57, 1953.
[22] H.D. Solomon, “Low-Cycle Fatigue of 60Sn/40Pb Solder”, ASTM Special Technical Publication, Philadelphia, Pa, USA, pp. 342-370, 1985.
[23] E.C. Cutiongco, S. Vaynman, M.E. Fine, and D.A. Jeannotte, “Isothermal Fatigue of 63Sn-37Pb Solder”, Journal of Electronic Packaging, Vol.112, pp.110-114, 1990.
[24] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-6, No. 3, pp. 52-57, 1983.
[25] H.D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-9, No. 4, pp.423-431, 1986.
[26] J. P. Clech, “BGA, Flip-Chip and CSP Solder Joint Reliability: of the Importance of Model Validation”, InterPack, pp.112-121, 1999.
[27] J.H.L. Pang, P.T.H. Low, B.S. Xiong, “Lead-free 95.5Sn-3.8Ag-0.7Cu Solder Joint Reliability Analysis For Micro-BGA Assembly”, IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, Vol.2, pp.131-136, 2004.
[28] T. Takahashi, S. Hioki, I. Shohji, O. Kamiya, “Fatigue Damage Evaluation by Surface Feature for Sn–3.5Ag and Sn–0.7Cu Solders”, Materials Transactions, Vol. 46, No. 11, pp. 2335-2343, 2005.
[29] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, pp. 456-465, 2002.
[30]H. H.Lee, “Finite Element Simulations with ANSYS Workbench 15”, 1^sted.,Taiwan, Chuan Hwa Book Co., 2014.
[31]PBGA 208, “Ball Grid Array (BGA) Packaging”, Intel Packaging Databook, 2000.
[32] K.W. Shim, and W.Y. Lo, “Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages”, IEEE International Electronic Manufacturing Technology, pp. 109-114, 2006.
[33] K. Biswas, S. Liu, X. Zhang, T.C. Chai, “Effects of detailed substrate modeling and solder layout design on the 1^st and 2^nd level solder joint reliability for the large die FCBGA”, IEEE International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-7, 2008.
[34] H.U. Akay, Y. Liu, M.Tassaian, “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages”, ASME Journal of Electronic Packaging, Vol.125, pp.347-353, 2003.
[35] J.H. Lau, S.H. Pan, “Creep Behaviors of Flip Chip on Board With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints”, Journal of Microcircuits and Electronic Packaging, Vol.24, No.1, pp.11-18, 2001.
[36] J.H. Lau, X. Zhang, S.K.W. Seah, K. Vaidyanathan, T.C. Chai, “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and their Flip-Chip Microbumps”, IEEE Electronic Components and Technology Conference, pp.1073-1081, 2008.
[37] M. Pei and J. Qu, “Constitutive Modeling of Lead-Free Solders” , IEEE Advanced Packaging Materials: Processes, Properties and Interfaces, pp.45-49, 2005.
[38] 林家帆,“覆晶球柵陣列組合體之熱機械行為分析”,國立成功大學機械工程研究所碩士論文,2013年。
[39] T. Takahashi, S. Hioki, I. Shohji, O. Kamiya, “Fatigue Damage Evaluation by Surface Feature for Sn–3.5Ag and Sn–0.7Cu Solders”, Materials Transactions, Vol. 46, No. 11, pp. 2335-2343, 2005.
[40] George C. Lo “Electroplated Compliant High-Density Interconnects For Next-Generation Microelectronic Packaging”, M.S. thesis, Georgia Institute of Technology, U.S.,pp.37-39, 2005
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw