進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1907201611101800
論文名稱(中文) 牙型係數設計與軌道表面粗糙度對於環狀式滾珠螺桿之磨潤行為與熱彈不穩定性之研究
論文名稱(英文) Study on the Effects of Groove Factor and Surface Roughness of Raceways in the Ball-Bearing-Like Specimens on the Tribological Behavior and Thermoelastic Instability
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 羅瑞揚
研究生(英文) Ruei-yang Luo
學號 n16034085
學位類別 碩士
語文別 中文
論文頁數 144頁
口試委員 指導教授-林仁輝
口試委員-邱源成
口試委員-朱孝業
口試委員-黃逸群
中文關鍵字 特殊環形試件  牙型係數  表面粗糙度  熱彈不穩定性 
英文關鍵字 ball-bearing-like  groove factor  surface roughness  thermoelastic instability 
學科別分類
中文摘要 本研究中為模擬實際滾珠螺桿之運動行為,製作特殊環形試件且具有三種不同牙型係數之設計,基於三種不同牙型係數(Groove factor),除滾珠直徑,試件尺寸及滾珠數量稍有不同。理論分析運用在試驗機之軸向負載及轉速設定,使各牙型設計最大接觸應力接近2.0GPa,以進行牙型係數及表面粗糙度對於磨潤行為以及熱彈不穩定性發生之研究。基於理論模型,在實驗中所擷取之摩擦扭矩訊號產生振盪現象為熱彈不穩定發生所致。此不穩定性將逐漸在滾珠與內環軌道面形成,而牙型係數與內環軌道表面粗糙度為發生不穩定之控制因子,內環軌道粗糙度主導初期摩擦係數並與磨合行為之不穩定性有所關聯;而牙型係數則扮演著控制平均摩擦係數以及熱彈不穩定性發生之角色。當達到臨界摩擦係數值時即開始發生熱彈不穩定,摩擦係數之初始振盪因此成為開始發生熱彈不穩定性之主因。研究顯示,內環軌道在較小之粗糙度之情況下,在磨合初期會有較低之摩擦係數,使熱彈不穩定性之現象延後發生;而較大之牙型係數有助於熱彈不穩定之延後發生。因此,內環軌道較小粗糙度與較大牙型係數的設計能夠降低接觸面之滑動比並延後熱彈不穩定之發生時間。
英文摘要 In the present study, ball-bearing-like specimens are prepared with three groove factors (GF ≡ r/D; r: radius of groove; D: diameter of ball) in order to simulate the functions of a ball screw. Based on the three GF values, the specimens are designed with the number of balls and the dimensions except for the diameter of ball to be slightly different. Analyses of operating conditions are conducted for the axial load applied to the dry-lubrication specimen running at a rotational speed such that the maximum contact stress created in every specimen should be close to the same value (about 2.0 GPa). The effects of the groove factor and surface roughness of a raceway on the tribological behavior and onset of thermoelastic instability are investigated. Based on a theoretical model, the fluctuations of frictional torque (or friction coefficient) arising during the testing process are found to be due to the occurrence of thermoelastic instability. This instability generally took place at the contact between a ball and the inner raceway. The groove factor and surface roughness of the inner raceway are the controlling factors of the time of initial instability. Inner raceway roughness is initially the dominant factor of the friction coefficient and the instability associated with running-in behavior. The groove factor then dominates the friction coefficient and instability behavior. Thermoelastic instability occurs when the friction coefficient reaches its threshold value. The initial variations in friction coefficient thus become the major factor in the onset of thermoelastic instability. An inner raceway with a small surface roughness has a low friction coefficient in the running-in process, resulting in a delay of the initial instability. A relatively large groove factor is advantageous for delaying instability. The combination of a small surface roughness of the inner raceway and a relatively large groove factor is favorable for lowering the slip ratio in the contact area and delaying the onset of instability.
論文目次 摘要 I
Extended Abstract II
致謝 VI
目錄 VII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機 7
1-4 論文架構 10
第二章 基本原理 12
2-1 平面環狀式滾珠螺桿之運動學分析 12
2-1-1 平面環狀式滾珠螺桿 13
2-1-2 幾何分析與初始接觸角 15
2-1-3 變形分析與負荷因子 17
2-1-4 曲率差及曲率和 18
2-1-5 滾珠與軌道面之牙型設計 22
2-1-6 滾珠軸承數學模型分析 23
2-2 平面環狀式滾珠螺桿之接觸滑動分析 26
2-2-1 滾珠自旋、公轉角速度 27
2-2-2 滑動速度之推導 28
2-2-3 滑動比 29
2-3 熱彈不穩定性 31
2-3-1 熱彈不穩定之行為與現象 31
2-3-2 熱膨脹量與線性磨耗量 34
2-4 演化式演算法 38
2-4-1 基因演算法 38
2-4-2 初始機制 39
2-4-3 基因演算法應用於摩擦係數 43
第三章 試件製作及實驗方法 54
3-1 實驗目的 54
3-2 試件設計及製作 55
3-3 實驗機台 58
3-4 量測儀器 59
3-4-1 閃頻儀(Stroboscope) 59
3-4-2 訊號感測器 60
3-4-3 三維表面輪廓儀 61
3-5 實驗規劃與步驟 62
3-5-1 熱電偶量測位置 62
3-5-2 前置作業 63
3-5-3 實驗步驟 65
第四章 結果與討論 81
4-1 乾式第一次實驗各牙型設計探討 83
4-1-1 摩擦力與正向力之討論 86
4-1-2 熱電偶擷取溫度之比較 90
4-1-3 牙型係數與表面粗糙度對磨耗量之影響 91
4-1-4 內外軌道之切向力結果 92
4-1-5 內外軌道之摩擦係數結果 94
4-2 乾式第二次實驗各牙型設計探討 95
4-2-1 表面粗糙度與牙型設計對摩擦係數之影響 95
4-2-2 表面粗糙度與牙型設計對摩擦扭矩之影響 96
4-2-3 表面粗糙度與牙型設計對溫升行為之影響 98
4-2-4 表面粗糙度與牙型設計對軸向力之影響 99
4-3 熱彈不穩定性發生時間點之結果與討論 100
4-3-1 熱彈不穩定性發生時間點 101
4-3-2 滑動比對於熱彈不穩定發生之影響 102
4-4 具潤滑條件下不同牙型設計之磨潤性能比較 104
4-4-1 潤滑條件下摩擦扭矩與摩擦係數之比較 105
4-4-2 潤滑條件下熱電偶擷取溫度之比較 106
第五章 結論與未來展望 135
5-1 結論 135
5-2 未來展望 138
參考文獻 139

參考文獻 [1] T. A. Harris, “An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings,” ASME J. Lubr. Technol. 93, 1971.
[2] T. A. Harris, Rolling Bearing Analysis, 5th Ed. Chichester: John Wiley & Sons, 2008.
[3] M. C. Lin, B. Ravani, and S. A. Velinsky, “Kinematics of the Ball Screw Mechanism,” J. Mech. Des., vol. 116, no. 3, p. 849, 1994.
[4] B.Ravani, M. C. Lin, and S. A. Velinsky, “Design of the Ball Screw Mechanism for Optimal Efficiency,” ASME J. Mech. Des, vol. 116, pp. 856–861, 1994.
[5] C. C. Wei and J. F. Lin, “Kinematic Analysis of the Ball Screw Mechanism Considering Variable Contact Angles and Elastic Deformations,” J. Mech. Des., vol. 125, no. 4, pp. 717–733, 2003.
[6] C. C. Wei and R. S. Lai, “Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds,” Mech. Mach. Theory, vol. 46, no. 7, pp. 880–898, 2011.
[7] A. B. Jones, “A General Theory for Elastically Constrained Ball and Radial Roller Bearings under Arbitrary Load and Speed Conditions,” ASME,Journal Basic Eng, vol. 82, pp. 309–320, 1960.
[8] N. T. Liao and J. F. Lin, “A new method for the analysis of deformation and load in a ball bearing with variable contact angle,” J. Mech. Des., vol. 123, no. 2, pp. 304–312, 2001.
[9] N. T. Liao and J. F. Lin, “Ball bearing skidding under radial and axial loads,” Mech. Mach. Theory, vol. 37, no. 1, pp. 91–113, 2002.
[10] F. Hirano, “Motion of a Ball in Angular-Contact Ball Bearing,” Tribol. Trans., vol. 8, no. 4, pp. 425–434, 1965.
[11] F. P. Bowden and D Tabor, Friction and Lubrication of Solids. Oxford: Clarendon Press, 1950.
[12] F. P. Bowden and P. H. Thomas, “The Surface Temperature of Sliding Solids,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 223, no. 1152, pp. 29–40, 1954.
[13] J. Barber, “Thermoelastic instabilities in the sliding of comforming solids,” Proc. R. Soc. London. A. Math. Phys. Sci., vol. 312, no. 1510, pp. 381–394, 1969.
[14] T. A. Dow and R. A. Burton, “Thermoelastic instability of sliding contact in the absence of wear,” Wear, vol. 19, no. 3, pp. 315–328, 1972.
[15] T. A. Dow and R. A. Burton, “The Role of Wear in the Initiation of Thermoelastic Instabilities of Rubbing Contact,” J. Lubr. Technol., vol. 95, no. 1, pp. 71–75, 1973.
[16] T. A. Dow and R. D. Stockwell, “Experimental verification of thermoelastic instabilities in sliding contact.,” Am. Soc. Mech. Eng., no. 76 -Lub-21, 1976.
[17] R. A. Burton, “Thermal deformation in frictionally heated contact,” Wear, vol. 59, no. 1, pp. 1–20, 1980.
[18] F. F. Ling, “A quasi-iterative method for computing interfacce temperature distributions,” Zeitschrift fur Angew. Math., vol. 10, no. 5, pp. 461–474, 1959.
[19] J. Bos and H. Moes, “Frictional Heating of Elliptic Contacts,” Tribol. Ser., vol. 27, no. C, pp. 491–500, 1994.
[20] HIWIN Technologies Corp., Ballscrews Technical Information. 2015.
[21] 黃仲宏, Ed., 2014 機械產業年鑑. 經濟部技術處, 2014.
[22] 昊飛科, “關於Hertz點接觸理論適用範圍探討,” Bearing2007, vol. 5, 2007.
[23] N. T. Liao and J. F. Lin, “Rolling-Sliding Analysis in Ball Bearing Considering Thermal Effect,” Tribol. Trans., vol. 49, no. 1, pp. 1–16, 2006.
[24] P. K. Kankar, S. C. Sharma, and S. P. Harsha, “Rolling element bearing fault diagnosis using wavelet transform,” Neurocomputing, vol. 74, no. 10, pp. 1638–1645, 2011.
[25] A. B. Jones, “Ball Motion and Sliding Friction in Ball Bearings,” ASME,Journal Basic Eng, vol. 81, pp. 1–12, 1959.
[26] N. T. Liao, Analyses of Mechanisms and Fatigue Life in a High-Speed Ball Bearing. Dissertation for Doctor of Phiosophy: National Cheng Kung University, 2002.
[27] M. Quillien, R. Gras, L. Collongeat, and T. Kachler, “A testing device for rolling-sliding behavior in harsh environments: The twin-disk cryotribometer,” Tribol. Int., vol. 34, no. 4, pp. 287–292, 2001.
[28] W. Wei-Yen, L. I-Hsum, C. Ming-Chang, S. Shun-Feng, and H. Shi-Boun, “Dynamic Slip-Ratio Estimation and Control of Antilock Braking Systems Using an Observer-Based Direct Adaptive ;Neural Controller,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1746–1756, 2009.
[29] T. A. Dow and J. W. Kannel, “Thermomechanical effects in high current density electrical slip rings,” Wear, vol. 79, no. 1, pp. 93–105, 1982.
[30] M. D. Bryant and L. Jau-Wen, “Photoelastic visualization of contact phenomena between real tribological surfaces, with and without sliding,” Wear, vol. 170, no. 2, pp. 267–279, 1993.
[31] K. L. Johnson, Contact Mechanics. Cambridge: Cambridge University Press, 1985.
[32] J. R. Barber, “The effect of thermal distortion on constriction resistance,” Int. J. Heat Mass Transf., vol. 14, no. 6, pp. 751–766, 1971.
[33] J. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
[34] J. S. Arora, Introduction to Optimum Design, 3rd ed. Academic Press, 2012.
[35] 方紹宇, 應用基因演算法於運動系統之前回饋力補償. 國立台北科技大學碩士論文, 2006.
[36] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301, 1965.
[37] 黃淳紹, 運用頻譜分析與多重碎形理論於長時間滾珠螺桿系統運轉時訊號分析. 國立成功大學機械工程學系碩士論文, 2013.
[38] L. Wang, “Support Vector Machines: Theory and Applications,” 2005.
[39] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data-A short course. 全華圖書, 2012.
[40] L. Junfeng, C. Xiaoan, K. Huimin, Z. Peng, and H. Ye, “Analysis on Thermal Properties of Grease- lubricated Ball Bearing,” Mech. Sci. Technol. Aerosp. Enhineering, vol. 33, no. 6, pp. 6–9, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2026-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw