進階搜尋


下載電子全文  
系統識別號 U0026-1907201320574500
論文名稱(中文) 篩選及分析對抗腸病毒71型之噬菌體人類單鏈抗體
論文名稱(英文) Selection and characterization of EV71 antibody by phage display human scFv antibody library
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系碩博士班
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 101
學期 2
出版年 102
研究生(中文) 劉盈秀
研究生(英文) Ying-Hsiu Liu
學號 T36001073
學位類別 碩士
語文別 英文
論文頁數 48頁
口試委員 指導教授-張權發
口試委員-楊文仁
口試委員-羅玉枝
中文關鍵字 腸病毒71型  噬菌體人類單鏈抗體 
英文關鍵字 Enterovirus 71  scFv phage library 
學科別分類
中文摘要 腸病毒71型屬於ss(+) RNA 病毒,Picornaviridae病毒科,是引起手足口症、泡疹性咽峽炎的病原之一。1998年在台灣發生大規模的流行造成405例的重病個案,其中有78個案例因神經性或心肺性併發症而死亡。腸病毒71型感染對象多半是三歲以下的小孩,目前主要疫區為亞太地區。為防治腸病毒71型,接種疫苗被認為是最有效的手段,但疫苗仍處在研發或臨床試驗階段。另外研發抗體作為初期感染的偵測或診斷也可以防治腸病毒71型的傳播。透過基因工程的方式可以在噬菌體上表現不同型式的抗體。在本篇研究中,主要是透過biopanning的方式從噬菌體人類單鏈抗體庫中篩選可以對抗腸病毒71型的片段抗體。利用限制性片段長度多型性分析(RFLP)將385個隨機挑選的clones分成5群。從中分別選擇5個clone做定序,並將定序的結果在IMGT的資料庫中比對抗體序列。發現5個clone都帶有抗體重鏈變異區(VH),但只有clone 3及clone 9有抗體輕鏈變異區。雖然clone 3及clone 9在基因分析上表現完整的單鏈抗體的序列,但在西方點墨法中並沒有看到有單鏈抗體蛋白質的表現。儘管如此,在另外的clone 6及13表現儘管只重鏈變異區的片段中,發現這兩個clone對腸病毒71型具有結合能力,不管是在ELISA、西方點墨法或是免疫螢光實驗都可以証實。在本篇的研究中,我們從噬菌體人類單鏈抗體庫中篩選出兩個有潛力的噬菌體人類抗體株可以應用於腸病毒的偵測或研究上。
英文摘要 Enterovirus 71 (EV71) which causes hand-foot-mouth disease (HFMD) and herpangina belongs to the Picornaviridae family with ss(+) RNA virus. In 1998, EV71 outbreak in Taiwan and resulted in 78 fatal cases of 405 severe complications related neurological or cardiopulmonary symptoms. EV71 has been threatened the children under 3 years of age in Asia-Pacific area. Vaccination of EV71 seems the most efficient to eradicate the infectious disease. However, the development of vaccines is still in clinical trials. Antibodies also develop for early detection and diagnosis to control and prevent EV71 transmission. Different antibody format can be expressed by phage display technology via genetic engineering. Here, we selected the phage clones to against EV71 from the human scFv antibody library via biopanning. Procedure of biopanning included binding the target, washing out unbound phage and amplification of binders. Phage clones in total 385 were random picked and grouped by RFLP with SalI restriction enzyme. Five groups were identified and sequenced the nucleotides. Sequence data were aligned with the international ImMunoGeneTics information system (IMGT). We found that all of five phage clones contain a variable heavy sequence. Phage clone 3 and 9 contained full length scFv nucleotide sequence but formed no functional scFv antibody in protein level. However, the phage clones 6 and 13 showed binding ability to against EV71 that revealed in ELISA results. In addition, the phage clone 6 and 13 can recognize EV71virus particles and VP2 protein in western blot. Phage clone 6 and 13 detected EV71 in RD cell can be observed by immunofluorescence assay (IFA). In this study, the data suggested that phage clone 6 and 13 from the human scFv antibody library can be applied for EV71 research or diagnosis.
論文目次 Contents
摘要................................................... I
Abstract............................................... II
致謝................................................... III
Contents............................................... IV
List of Figures.........................................VI
List of Table...........................................VII
Abbreviations...........................................VIII
Introduction............................................1
Enterovirus 71 (EV71)...................................1
Epidemiology and pathogenesis...........................1
Virology of EV71........................................1
Control and prevention..................................2
Antibody phage display..................................3
Overview................................................3
Antibody................................................4
Structure of the M13 bacteriophage......................5
Phagemid vector.........................................5
Construction of scFv phage display......................6
Experimental design.....................................7
Materials and Methods...................................8
Materials...............................................8
Single chain fragment variable (scFv) human phage library.................................................8
Bacteria strain and M13KO7 helper phage.................8
Cell, Virus and VP2 protein.............................8
Methods.................................................9
Rescue phage library....................................9
Biopanning for anti-EV71 phage clones...................9
Titering of phage and phage quantification by ELISA.....11
Identify the phage clones...............................11
Phage ELISA.............................................12
Western blot............................................12
Immunofluorescence assay (IFA)..........................13
Results.................................................14
Selection of phage clones which bind to EV71 by biopanning..............................................14
Grouping and sequencing analysis of selected phage clones..................................................14
Phage ELISA for MP4 strain and VP2 protein of EV71......15
Phage clones expressed the pIII protein.................15
Detection of EV71 by phage Western blot.................16
Determination of EV71 proteins by silver staining of SDS PAGE....................................................17
Characterization of phage clones by immunofluorescence assay...................................................17
Discussion..............................................18
Improve selecting a high affinity phage by using competitor in biopanning...........................................18
Human variable heavy and light chains were identified in phage clones by IMGT....................................18
Recognition of EV71 viral proteins by phage clones......19
Phage clones applied for immunofluorescence assay.......20
Conclusion..............................................21
References..............................................34
Appendix I. M13 phage structure.........................38
Appendix Π. Antibody phage display library construction39
Appendix III. Expected EV71 viral proteins..............40
Appendix IV.............................................41
1. Materials............................................41
1-1. Chemicals..........................................41
1-2. Antibodies.........................................42
1-3. Instruments........................................42
2. Buffer, Reagents and Kit.............................44
2-1. Phage Rescue.......................................44
2-2. PCR................................................45
2-3. Plasmid extraction.................................45
2-4. ELISA..............................................45
2-5. Protein electrophoresis............................46
2-6. Western blot.......................................47
2-7. Sliver staining: ProteoSilver Silver Stain Kit (PROT-SIL2, Sigma, USA).................................47

參考文獻 1. Chen, S.C., et al., An eight-year study of epidemiologic features of enterovirus 71 infection in Taiwan. Am J Trop Med Hyg, 2007. 77(1): p. 188-91.
2. Lin, K.H., et al., Evolution of EV71 genogroup in Taiwan from 1998 to 2005: an emerging of subgenogroup C4 of EV71. J Med Virol, 2006. 78(2): p. 254-62.
3. Iwai, M., et al., Genetic changes of coxsackievirus A16 and enterovirus 71 isolated from hand, foot, and mouth disease patients in Toyama, Japan between 1981 and 2007. Jpn J Infect Dis, 2009. 62(4): p. 254-9.
4. Chua, K.B. and A.R. Kasri, Hand foot and mouth disease due to enterovirus 71 in Malaysia. Virol Sin, 2011. 26(4): p. 221-8.
5. Xu, W., et al., Hand, Foot and Mouth Disease in Yunnan Province, China, 2008-2010. Asia Pac J Public Health, 2011. X(X): p. 1-9.
6. Ma, E., et al., The enterovirus 71 epidemic in 2008--public health implications for Hong Kong. Int J Infect Dis, 2010. 14(9): p. e775-80.
7. Wu, Y., et al., The largest outbreak of hand; foot and mouth disease in Singapore in 2008: the role of enterovirus 71 and coxsackievirus A strains. Int J Infect Dis, 2010. 14(12): p. e1076-81.
8. Seiff, A., Cambodia unravels cause of mystery illness. Lancet, 2012. 380(9838): p. 206.
9. Chang, L.Y., Enterovirus 71 in Taiwan. Pediatr Neonatol, 2008. 49(4): p. 103-12.
10. Plevka, P., et al., Crystal structure of human enterovirus 71. Science, 2012. 336(6086): p. 1274.
11. Liu, C.C., et al., Purification and characterization of enterovirus 71 viral particles produced from vero cells grown in a serum-free microcarrier bioreactor system. PLoS One, 2011. 6(5): p. e20005.
12. Tan, C.S. and M.J. Cardosa, High-titred neutralizing antibodies to human enterovirus 71 preferentially bind to the N-terminal portion of the capsid protein VP1. Arch Virol, 2007. 152(6): p. 1069-73.
13. Xu, J., et al., EV71: an emerging infectious disease vaccine target in the Far East? Vaccine, 2010. 28(20): p. 3516-21.
14. Yamayoshi, S., et al., Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 798-801.
15. Nishimura, Y., et al., Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 794-7.
16. Lin, Y.W., et al., Enterovirus 71 infection of human dendritic cells. Exp Biol Med (Maywood), 2009. 234(10): p. 1166-73.
17. Yang, B., H. Chuang, and K.D. Yang, Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J, 2009. 6: p. 141.
18. Su, P.Y., et al., Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. BMC Microbiol, 2012. 12: p. 162.
19. Yi, L., et al., The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol, 2011. 37(4): p. 313-27.
20. Solomon, T., et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis, 2010. 10(11): p. 778-90.
21. Kuo, R.L. and S.R. Shih, Strategies to develop antivirals against enterovirus 71. Virol J, 2013. 10: p. 28.
22. Liang, Z., et al., Progress on the research and development of human enterovirus 71 (EV71) vaccines. Front Med, 2013. 7(1): p. 111-21.
23. Chen, C.W., et al., Formaldehyde-inactivated human enterovirus 71 vaccine is compatible for co-immunization with a commercial pentavalent vaccine. Vaccine, 2011. 29(15): p. 2772-6.
24. Li, Y.P., et al., Safety and immunogenicity of a novel human Enterovirus 71 (EV71) vaccine: a randomized, placebo-controlled, double-blind, Phase I clinical trial. Vaccine, 2012. 30(22): p. 3295-303.
25. Lee, M.S., et al., Challenges to licensure of enterovirus 71 vaccines. PLoS Negl Trop Dis, 2012. 6(8): p. e1737.
26. Fauci, A.S. and D.M. Morens, The perpetual challenge of infectious diseases. N Engl J Med, 2012. 366(5): p. 454-61.
27. Xu, F., et al., Performance of detecting IgM antibodies against enterovirus 71 for early diagnosis. PLoS One, 2010. 5(6): p. e11388.
28. Smith, G.P., Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985. 228(4705): p. 1315-7.
29. Willats, W.G., Phage display: practicalities and prospects. Plant Mol Biol, 2002. 50(6): p. 837-54.
30. Fack, F., et al., Epitope mapping by phage display: random versus gene-fragment libraries. J Immunol Methods, 1997. 206(1-2): p. 43-52.
31. Cesareni, G., Peptide display on filamentous phage capsids. A new powerful tool to study protein-ligand interaction. FEBS Lett, 1992. 307(1): p. 66-70.
32. Winter, G., et al., Making antibodies by phage display technology. Annu Rev Immunol, 1994. 12: p. 433-55.
33. Neri, D., H. Petrul, and G. Roncucci, Engineering recombinant antibodies for immunotherapy. Cell Biophys, 1995. 27(1): p. 47-61.
34. Hudson, P.J. and C. Souriau, Engineered antibodies. Nat Med, 2003. 9(1): p. 129-34.
35. Holliger, P. and P.J. Hudson, Engineered antibody fragments and the rise of single domains. Nat Biotechnol, 2005. 23(9): p. 1126-36.
36. Tohidkia, M.R., et al., Molecular considerations for development of phage antibody libraries. J Drug Target, 2012. 20(3): p. 195-208.
37. Li, S., P. Kussie, and K.M. Ferguson, Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8. Structure, 2008. 16(2): p. 216-27.
38. Bain, B. and M. Brazil, Adalimumab. Nat Rev Drug Discov, 2003. 2(9): p. 693-94.
39. Oriuchi, N., et al., Current status of cancer therapy with radiolabeled monoclonal antibody. Ann Nucl Med, 2005. 19(5): p. 355-65.
40. Peter, K., et al., Construction and functional evaluation of a single-chain antibody fusion protein with fibrin targeting and thrombin inhibition after activation by factor Xa. Circulation, 2000. 101(10): p. 1158-64.
41. Hagemeyer, C.E., et al., Single-chain antibodies as diagnostic tools and therapeutic agents. Thrombosis and Haemostasis, 2009. 101(6): p. 1012-9.
42. Rowley, M.J., K. O’Connor, and L. Wijeyewickrema, Phage display for epitope determination: A paradigm for identifying receptor–ligand interactions. 2004. 10: p. 151-188.
43. Qi, H., et al., Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol, 2012. 417(3): p. 129-43.
44. Lu, R.M., et al., Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials, 2011. 32(12): p. 3265-74.
45. Vieira, J. and J. Messing, Production of single-stranded plasmid DNA. Methods Enzymol, 1987. 153: p. 3-11.
46. Wang, Y.F., et al., A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol, 2004. 78(15): p. 7916-24.
47. Pande, J., M.M. Szewczyk, and A.K. Grover, Phage display: concept, innovations, applications and future. Biotechnol Adv, 2010. 28(6): p. 849-58.
48. Carmen, S. and L. Jermutus, Concepts in antibody phage display. Brief Funct Genomic Proteomic, 2002. 1(2): p. 189-203.
49. Kramer, R.A., et al., A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucleic Acids Res, 2003. 31(11): p. e59.
50. Ow, D.S., et al., Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb Cell Fact, 2010. 9: p. 22.
51. Cui, S., et al., Crystal structure of human enterovirus 71 3C protease. J Mol Biol, 2011. 408(3): p. 449-61.
52. Lim, X.F., et al., Characterization of an isotype-dependent monoclonal antibody against linear neutralizing epitope effective for prophylaxis of enterovirus 71 infection. PLoS One, 2012. 7(1): p. e29751.
53. Lim, X.F., et al., Characterization of a novel monoclonal antibody reactive against the N-terminal region of Enterovirus 71 VP1 capsid protein. J Virol Methods, 2013. 188(1-2): p. 76-82.
54. Kiener, T.K., et al., Characterization of a monoclonal antibody against the 3D polymerase of enterovirus 71 and its use for the detection of human enterovirus A infection. J Virol Methods, 2012. 180(1-2): p. 75-83.
55. He, F., et al., Development of a sensitive and specific epitope-blocking ELISA for universal detection of antibodies to human enterovirus 71 strains. PLoS One, 2013. 8(1): p. e55517.
56. Curry, S., et al., Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol, 1997. 71(12): p. 9743-52.
57. Jaye, D.L., et al., Direct fluorochrome labeling of phage display library clones for studying binding specificities: applications in flow cytometry and fluorescence microscopy. J Immunol Methods, 2004. 295(1-2): p. 119-27.
58. Lillo, A.M., et al., Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS One, 2011. 6(12): p. e27756.
59. Kelly, K.A., P. Waterman, and R. Weissleder, In vivo imaging of molecularly targeted phage. Neoplasia, 2006. 8(12): p. 1011-8.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw