進階搜尋


下載電子全文  
系統識別號 U0026-1907201222431600
論文名稱(中文) 組蛋白去乙醯酶6在鈣離子感測蛋白基質交互因子1活化過程中扮演的角色
論文名稱(英文) Role of histone deacetylase 6 on the activation of calcium store sensor STIM1
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 100
學期 2
出版年 101
研究生(中文) 劉冠妤
研究生(英文) Kuan-Yu Liu
學號 s26994079
學位類別 碩士
語文別 英文
論文頁數 58頁
口試委員 指導教授-沈孟儒
口試委員-湯銘哲
口試委員-陳炳焜
中文關鍵字 鈣離子  SOCE  STIM1  HDAC6  微管  子宮頸癌 
英文關鍵字 Ca2+  SOCE  STIM1  HDAC6  microtubule  cervical cancer 
學科別分類
中文摘要 細胞內鈣離子的恆定對於調節細胞之生理功能例如細胞增生、遷移及基因表現扮演重要的角色。鈣池調控鈣離子流入(SOCE),是在非興奮性細胞中造成鈣離子進入細胞並穩定細胞內鈣離子訊號的機制,基質交互分子(STIM1)是位於內質網上的鈣離子感測蛋白,當內質網中的鈣離子濃度下降時,STIM1會被活化並聚集,並且和鈣池調控鈣離子通道蛋白Orai1產生交互作用,進而啟動SOCE。先前研究指出,微管在SOCE活化過程中及調控STIM1在細胞內分佈位置扮演重要的角色。組蛋白去乙醯酶6 (HDAC6)可將微管去乙醯化,並改變微管之穩定性,且已知內質網的型態是由微管間交互作用來維持。我的研究目標在於探討HDAC6在STIM1活化過程中扮演的角色。我利用了藥理和基因方法來研究HDAC6對於STIM1在細胞中的移動、STIM1與微管尖端蛋白EB1的交互作用以及對於SOCE的影響。由免疫螢光染色的結果顯示,HDACs抑制劑並不會影響Thapsgargin (TG)引起的STIM1活化與聚集。在活化STIM1之後,我分析STIM1在細胞內的分佈及微管乙醯化程度,發現只有抑制HDAC家族中的HDAC6可影響STIM1由內質網移動到細胞膜邊的過程。另外,由單細胞鈣離子濃度分析的結果也顯示HDAC6抑制劑可阻斷SOCE的活化,並與劑量呈現正相關的趨勢。重要的是,給予正常的子宮頸上皮細胞tubastatin-A並不會增加微管的乙醯化,也不影響其SOCE的活化。綜合以上實驗結果,證明HDAC6在子宮頸癌細胞的STIM1活化過程中及鈣離子的流入扮演重要的角色,並可能提供予未來臨床應用。
英文摘要 Intracellular calcium (Ca2+) homeostasis is important for many cellular functions such as proliferation, migration and gene expression. Store-operated Ca2+ entry (SOCE) is a major Ca2+ influx pathway and plays an important role in generation of the sustained Ca2+ signals in non-excitable cells. Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER) Ca2+ sensor which is essential for SOCE. Upon Ca2+ depletion from ER stores, STIM1 aggregates into multiple puncta and translocates to the plasma membrane, where STIM1 interacts with Orai1 to mediate Ca2+ entry. Previous studies showed that microtubules play a facilitative role in SOCE activation by optimizing the localization of STIM1. Histone deacetylase 6 (HDAC6) is a microtubule-associated deacetylase that can deacetylate microtubules and can alter the stability of microtubules. It is well established that the morphology of ER is maintained through a tight interaction with microtubules. My study aims to investigate the role of microtubule-associated deacetylase HDAC6 on the activation of ER Ca2+ store sensor STIM1. I used a combination of pharmacological and genetic approaches to investigate the roles of HDAC6 on the membrane trafficking of STIM1, the interaction of STIM1 with microtubule-binding protein EB1 and SOCE activation. Results from immunofluorescent images showed that all HDAC inhibitors did not interfere with the formation of STIM1 multiple puncta induced by thapsigargin. I analyzed the distribution of STIM1 and acetylated-α-tubulin after STIM1 activation. Only inhibition of HDAC6 can interfere STIM1 trafficking from ER to plasma membrane. Consistently, the results of single cell intracellular Ca2+ measurement showed that HDAC6 inhibitors blocked the SOCE activity in a dose-dependent manner. In contrast, the treatment of tubastatin-A did not affect the acetylation of -tubulin and the activity of SOCE in the normal cervical cells. Taken these results together, I suggest that HDAC6 plays an important role in STIM1 trafficking and further affects Ca2+ influx in cervical cancer cells. This study makes HDAC6 a potential therapeutic target in cervical cancer.
論文目次 Abstract...................3
中文摘要....................5
Acknowledgement............6
Content....................7
Figure content.............8
Introduction...............9
Materials and Methods......20
Results....................25
Discussion.................31
References.................38
Figures....................45
參考文獻 Akhmanova, A., and Steinmetz, M.O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology 9, 309-322.

Aldana-Masangkay, G.I., and Sakamoto, K.M. (2011). The role of HDAC6 in cancer. Journal of Biomedicine and Biotechnology (Epub 2010 Nov 7. DOI: 10.1155).

Bakowski, D., Glitsch, M.D., and Parekh, A.B. (2001). An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL-1 cells. Journal of Physiology 532, 55-71.

Bakowski, D., Nelson, C., and Parekh, A.B. (2012). Endoplasmic reticulum-mitochondria coupling: local Ca(2+) signalling with functional consequences. Pflugers Archiv : European Journal of Physiology (Epub 2012 Mar 14. DOI: 10.1007).

Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology 4, 517-529.

Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Molecular Cell Biology 1, 11-21.

Bisgrove, S.R., Hable, W.E., and Kropf, D.L. (2004). +TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiology 136, 3855-3863.

Bradbury, C.A., Khanim, F.L., Hayden, R., Bunce, C.M., White, D.A., Drayson, M.T., Craddock, C., and Turner, B.M. (2005). Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19, 1751-1759.

Bryce, N.S., Clark, E.S., Leysath, J.L., Currie, J.D., Webb, D.J., and Weaver, A.M. (2005). Cortactin promotes cell motility by enhancing lamellipodial persistence. Current Biology 15, 1276-1285.

Butler, K.V., Kalin, J., Brochier, C., Vistoli, G., Langley, B., and Kozikowski, A.P. (2010). Rational design and simple chemistry yield a superior neuroprotective HDAC6 inhibitor, Tubastatin A. Journal of the American Chemical Society 132, 10842-10846.

Carew, J.S., Giles, F.J., and Nawrocki, S.T. (2008). Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Letters 269, 7-17.

Cheng, K.T., Liu, X., Ong, H.L., Swaim, W., and Ambudkar, I.S. (2011). Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLoS Biology (Epub 2011 Mar 8. DOI: 10.1371).

Conde, C., and Caceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience 10, 319-332.

Dabora, S.L., and Sheetz, M.R. (1988). The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54, 27-35.

de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610.

Deng, X., Wang, Y., Zhou, Y., Soboloff, J., and Gill, D.L. (2009). STIM and Orai: dynamic intermembrane coupling to control cellular calcium signals. The Journal of Biological Chemistry 284, 22501-22505.

Dixit, R., Barnett, B., Lazarus, J.E., Tokito, M., Goldman, Y.E., and Holzbaur, E.L. (2009). Microtubule plus-end tracking by CLIP-170 requires EB1. Proceedings of the National Academy of Sciences 106, 492-497.

Fahrner, M., Muik, M., Derler, I., Schindl, R., Fritsch, R., Frischauf, I., and Romanin, C. (2009). Mechanistic view on domains mediating STIM1-Orai coupling. Immunological Reviews 231, 99-112.

Fukushima, N., Furuta, D., Hidaka, Y., Moriyama, R., and Tsujiuchi, T. (2009). Post-translational modifications of tubulin in the nervous system. Journal of Neurochemistry 109, 683-693.
G. J. Van Tonder, and M. J. Lyons, Y.E. (2003). Tubulin acetylation and cell motiity. Nature 421, 230.

Galan, C., Dionisio, N., Smani, T., Salido, G.M., and Rosado, J.A. (2011). The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochemical Pharmacology 82, 400-410.

Gao, Y.S., Hubbert, C.C., and Yao, T.P. (2010). The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. The Journal of Biological Chemistry 285, 11219-11226.

Grigoriev, I., Gouveia, S.M., van der Vaart, B., Demmers, J., Smyth, J.T., Honnappa, S., Splinter, D., Steinmetz, M.O., Putney, J.W., Jr., Hoogenraad, C.C., et al. (2008). STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Current Biology 18, 177-182.

Haggarty, S.J., Koeller, K.M., Wong, J.C., Grozinger, C.M., and Schreiber, S.L. (2003). Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences 100, 4389-4394.

Hajkova, Z., Bugajev, V., Draberova, E., Vinopal, S., Draberova, L., Janacek, J., and Draber, P. (2011). STIM1-directed reorganization of microtubules in activated mast cells. Journal of Immunology 186, 913-923.

Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nature Reviews Molecular Cell Biology 10, 682-696.

Honnappa, S., Gouveia, S.M., Weisbrich, A., Damberger, F.F., Bhavesh, N.S., Jawhari, H., Grigoriev, I., van Rijssel, F.J., Buey, R.M., Lawera, A., et al. (2009). An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366-376.

Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.-F., and Yao, T.-P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458.

Janke, C., and Bulinski, J.C. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nature Reviews Molecular Cell Biology 12, 773-786.

Jousset, H., Frieden, M., and Demaurex, N. (2007). STIM1 knockdown reveals that store-operated Ca2+ channels located close to sarco/endoplasmic Ca2+ ATPases (SERCA) pumps silently refill the endoplasmic reticulum. The Journal of Biological Chemistry 282, 11456-11464.

Kaluza, D., Kroll, J., Gesierich, S., Yao, T.P., Boon, R.A., Hergenreider, E., Tjwa, M., Rossig, L., Seto, E., Augustin, H.G., et al. (2011). Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. The European Molecular Biology Organization journal 30, 4142-4156.

Khataee, H.R., and Khataee, A.R. (2010). Kinesin and Dynein Smart Nanomotors: Towards Bio-Nanorobotic Systems. Nano 05, 13-23.

Lee, K.P., Yuan, J.P., Hong, J.H., So, I., Worley, P.F., and Muallem, S. (2010). An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS letters 584, 2022-2027.

Li, D., Xie, S., Ren, Y., Huo, L., Gao, J., Cui, D., Liu, M., and Zhou, J. (2011). Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner. Protein & Cell 2, 150-160.

Lucero, H.A., Lebeche, D., and Kaminer, B. (1998). ERcalcistorin protein-disulfide isomerase acts as a calcium storage protein in the endoplasmic reticulum of a living cell. The Journal of Biological Chemistry 273, 9857-9863.

Luik, R.M., Wang, B., Prakriya, M., Wu, M.M., and Lewis, R.S. (2008). Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538-542.

Mancini, M., and Toker, A. (2009). NFAT proteins: emerging roles in cancer progression. Nature Reviews Cancer 9, 810-820.

Mitchison, T., and Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature 312, 237-242.

Nishioka, C., Ikezoe, T., Yang, J., Takeuchi, S., Koeffler, H.P., and Yokoyama, A. (2008). MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells. Leukemia Research 32, 1382-1392.

Palty, R., Raveh, A., Kaminsky, I., Meller, R., and Reuveny, E. (2012). SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149, 425-438.

Parekh, A.B. (2008). Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. The Journal of Physiology 586, 3043-3054.

Parekh, A.B. (2009). Local Ca2+ influx through CRAC channels activates temporally and spatially distinct cellular responses. Acta Physiologica 195, 29-35.

Parekh, A.B. (2010). Store-operated CRAC channels: function in health and disease. Nature Reviews Drug Discovery 9, 399-410.

Parekh, A.B. (2011). Decoding cytosolic Ca2+ oscillations. Trends in Biochemical Sciences 36, 78-87.

Prevarskaya, N., Skryma, R., and Shuba, Y. (2011). Calcium in tumour metastasis: new roles for known actors. Nature Reviews Cancer 11, 609-618.

Reed, N.A., Cai, D., Blasius, T.L., Jih, G.T., Meyhofer, E., Gaertig, J., and Verhey, K.J. (2006). Microtubule acetylation promotes kinesin-1 binding and transport. Current Biology 16, 2166-2172.

Roll-Mecak, A., and McNally, F.J. (2010). Microtubule-severing enzymes. Current Opinion in Cell Biology 22, 96-103.

Ryan, Q.C., Headlee, D., Acharya, M., Sparreboom, A., Trepel, J.B., Ye, J., Figg, W.D., Hwang, K., Chung, E.J., Murgo, A., et al. (2005). Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. Journal of Clinical Oncology 23, 3912-3922.

Saji, S., Kawakami, M., Hayashi, S., Yoshida, N., Hirose, M., Horiguchi, S., Itoh, A., Funata, N., Schreiber, S.L., Yoshida, M., et al. (2005). Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24, 4531-4539.

Sakuma, T., Uzawa, K., Onda, T., Shiiba, M., Yokoe, H., Shibahara, T., and Shibahara, T. (2006). Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. International Journal of Oncology 29, 117-124.

Schliwa, M., and Woehlke, G. (2003). Molecular motors. Nature 422, 759-765.

Shen, W.W., Frieden, M., and Demaurex, N. (2011). Local cytosolic Ca2+ elevations are required for stromal interaction molecule 1 (STIM1) de-oligomerization and termination of store-operated Ca2+ entry. The Journal of Biological Chemistry 286, 36448-36459.

Singaravelu, K., Nelson, C., Bakowski, D., de Brito, O.M., Ng, S.W., Di Capite, J., Powell, T., Scorrano, L., and Parekh, A.B. (2011). Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. The Journal of Biological Chemistry 286, 12189-12201.

Smyth, J.T., DeHaven, W.I., Bird, G.S., and Putney, J.W. (2007). Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. Journal of Cell Science 120, 3762-3771.

Tanenbaum, M.E., Akhmanova', A., and Medema, R.H. (2011). Bi-directional transport of the nucleus by dynein and kinesin-1. Communicative & Integrative Biology 4, 21-25.

Tran, A.D.-A., and Bulinski, J.C. (2007). HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. Journal of Cell Science 120, 1469-1479.

Valenzuela-Fernandez, A., Cabrero, J.R., Serrador, J.M., and Sanchez-Madrid, F. (2008). HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends in Cell Biology 18, 291-297.

Wang, Y., Deng, X., and Gill, D.L. (2010). Calcium signaling by STIM and Orai: intimate coupling details revealed. Science Signaling (Epub 2010 Nov 16. DOI: 10.1126).

Wu, M.M., Luik, R.M., and Lewis, R.S. (2007). Some assembly required- constructing the elementary units of store-operated Ca2+ entry. Cell Calcium 42, 163-172.

Xu, W.S., Parmigiani, R.B., and Marks, P.A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541-5552.

Yang, X., Jin, H., Cai, X., Li, S., and Shen, Y. (2012). Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proceedings of the National Academy of Sciences 109, 5657-5662.

Zilberman, Y., and Bershadsky, A. (2009). Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. Journal of Cell Science 122, 3531-3541.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw