進階搜尋


下載電子全文  
系統識別號 U0026-1907201215165600
論文名稱(中文) 雙光注入半導體雷射之非線性動態特性探討
論文名稱(英文) A Study of Nonlinear Dynamical Characteristics of Dual-Beam Optically Injected Semiconductor Lasers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 梁瑋倫
研究生(英文) Wei-Lun Liang
電子信箱 a127724@hotmail.com
學號 L76994162
學位類別 碩士
語文別 中文
論文頁數 174頁
口試委員 指導教授-黃勝廣
口試委員-魏明達
口試委員-曾碩彥
中文關鍵字 雙光注入  光注入  半導體雷射動態  微波譜頻率梳 
英文關鍵字 Dual-beam Injection  Optical Injection  Semiconductor Laser Dynamics  Microwave Frequency Comb 
學科別分類
中文摘要 本研究論文是以數值模擬方式,探討雙光注入半導體雷射之非線性動態特性。雙光注入半導體雷射是一個相當有趣,並且極具探討價值的議題,該系統是由兩顆單縱模主雷射(Master Laser)與一顆單縱模副雷射(Slave Laser)所組成,利用主雷射作為注入光源,將光注入副雷射後,再利用光偵測器、光譜與微波譜分析儀,即可量測副雷射的輸出光特性。
我們利用Xiao-Qiong Qi等人於2011年文獻中所提出之雙光注入半導體雷射光譜動態方案(Dynamics Scenarios)之分類為基礎,以數值模擬的方式探討雙光注入半導體雷射非線性動態地圖,而探討的方式是在雙注入的條件底下,固定一道固定端雷射之注入光的光強度以及頻率後,再改變另一道可調式雷射之注入光的光強度與頻率,使得系統在不同注入光條件下呈現出不同的輸出特性,來繪製出雙光注入半導體雷射非線性動態地圖。經數值計算結果,本論文共計提出45項,於文獻中從未發表過之雙光注入半導體雷射光譜類型,使整個半導體雷射之非線性動態特性分析更趨於完備,並可運用各類型之動態特性,來改善雷射之輸出品質。本研究結果可提供通訊光源應用卓參,以及對研究半導體雷射非線性動態特性有興趣者參考。
另外,我們也利用模擬的方式,詳細探討參入雜訊後的半導體雷射,在遭受雙注入下,所產生之微波譜頻率梳,對於微波譜頻率梳之模擬成果則達到振幅變化低於 ± 5.1 dB、頻梳帶寬超過20 GHz、頻率間距可調範圍由1 GHz到6 GHz。微波譜頻率梳可應用其等間隔之微波頻率特性,作為倍頻器及應用於多頻道信號廣播等用途。
英文摘要 In this thesis, we study the nonlinear dynamical characteristics of dual-beam optically injected semiconductor lasers by using numerical simulation method. Dual-beam optically injected semiconductor lasers is a very interesting and with explore the value issue. Two single longitudinal mode master laser and slave laser constitute the experimental system. The slave laser is injected by master laser. We could utilize the photodiode, optical spectrum analyzer and microwave spectrum analyzer to measure the characteristics of output light.
We investigate the dual-beam optically injected nonlinear dynamic map based on the classification of dynamics scenarios which is published by Xiao-Qiong Qi et al. in 2011. The method is to fix the light intensity and the frequency of the one master laser, and change the light intensity and the frequency of another master laser. Therefore, the system would show the different output characteristics in the different injection conditions, and we could draw the dual-beam optically injected nonlinear dynamic map.
Through the numerical calculation, we put forward 45 types of dual-beam optically injected optical spectra which are never published. Therefore, the classification of dual-beam optically injected nonlinear dynamic become more complete. We could utilize the characteristics of dual-beam optically injected nonlinear dynamic to improve the quality of the laser output. The results could be used in communication light source and provide the researchers who is interested in the nonlinear dynamical characteristics of semiconductor lasers.
In addition, we also use the numerical simulation method to discuss the dual-beam optically injected microwave frequency comb with laser noise. The simulation results of microwave frequency comb, it is found that the amplitude variation is less than ± 5.1 dB, the frequency comb bandwidth is greater than 20 GHz, and the adjustable range of frequency spacing is about 1 GHz to 6 GHz. The microwave frequency comb could be used in frequency multiplier and signal broadcasting.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 X
圖目錄 XI
第一章 緒論 1
1-1單光注入半導體雷射 1
1-2雙光注入半導體雷射 5
一、全光頻率轉換 6
二、微波譜頻率梳產生器 8
1-3論文架構 9
第二章 數值模擬公式 10
2-1半導體雷射速率方程式 10
2-2 模擬模型 13
2-2-1 雙光注入半導體雷射之模擬模型 13
2-2-2 雙光注入半導體雷射後暨串接注入半導體雷射之模擬模型 17
2-2-3被注入共振腔頻率於半導體雷射遭受光注入後產生之位移量 21
2-2-4 單光注入半導體雷射之雷射動態模擬地圖 22
第三章 雙光注入半導體雷射之動態行為分類定義 25
3-1分析光譜動態之法則 26
3-2 Scenario A之雷射光譜動態 31
3-2-1 雙光注入半導體雷射Scenario A之光譜定義 31
一、兩相鄰之頻率成分間距固定 31
二、注入頻率之光強度極大 31
三、無法保有各別單注入光譜之頻率成分 31
3-2-2 雙光注入半導體雷射Scenario A之光譜範例 32
一、雙注入之穩定鎖住雷射動態光譜 32
二、以穩定鎖住之雙注入雷射動態壓抑混沌動態 33
三、雙注入之週期一震盪雷射動態光譜 34
四、雙注入類似週期二震盪雷射動態光譜之型態一 35
五、雙注入類似週期二震盪雷射動態光譜之型態二 36
六、雙注入之混沌動態雷射光譜 37
七、含被注入共振腔頻率之雙注入之混沌動態雷射光譜 38
3-3 Scenario B之雷射光譜動態 39
3-3-1 雙光注入半導體雷射Scenario B之光譜定義 39
一、僅保留原先單一強注入之頻率成分 39
二、產生近簡併四波混和之頻率成分 39
3-3-2 雙光注入半導體雷射Scenario B之光譜範例 42
一、強注入於週期一震盪工作點,弱注入頻率鄰近強注入頻率 42
二、強注入於週期一震盪工作點,弱注入頻率鄰近被注入共振腔頻率 43
三、強注入於週期二震盪工作點,弱注入頻率鄰近強注入頻率 44
四、強注入於週期二震盪工作點,弱注入頻率鄰近被注入共振腔頻率 45
五、強注入於混動動態之工作點使弱注入不表現於雙注入光譜 46
六、強注入於週期一震盪、弱注入於混沌動態之工作點 47
3-4 Scenario AB之雷射光譜動態 48
3-4-1 雙光注入半導體雷射Scenario AB之光譜定義 48
3-4-2 雙光注入半導體雷射Scenario AB之光譜範例 49
3-5 Scenario C之雷射光譜動態 50
3-5-1 雙光注入半導體雷射Scenario C之光譜定義 50
3-5-2 雙光注入半導體雷射Scenario C之光譜範例 51
第四章 雙光注入半導體雷射之非線性動態 52
4-1 雙光注入半導體雷射之非線性動態地圖歸類方式 53
4-1-1 週期性或輕微非週期性之雙注入時序譜 53
4-1-2 高度非週期性之雙注入時序譜 55
4-2雙光注入半導體雷射中單一雷射工作點固定於不同位置之非線性動態地圖及其光譜分析 57
4-2-1 單一雷射工作點的主副雷射光頻差固定於30 GHz之雙光注入半導體雷射非線性動態地圖 57
一、大範圍地圖綜覽 57
二、單一注入工作點固定於ξ fix = 0.15、f fix = 30 GHz 之雙光注入半導體雷射非線性動態地圖及其局部放大圖之分析 61
三、固定端雷射工作點ξ fix = 0.15、f fix = 30 GHz之雙注入光譜分析 63
1. 可調式雷射頻率大於固定工作點雷射頻率之情況分析 63
2. 可調式雷射頻率小於固定工作點雷射頻率且為正頻之情況分析 70
3. 可調式雷射頻率小於固定工作點雷射頻率且為負頻之情況分析 73
4-2-2 單一雷射工作點的主副雷射光頻差固定於20 GHz之雙光注入半導體雷射非線性動態地圖 80
一、大範圍地圖綜覽 80
二、單一注入工作點固定於ξ fix = 0.15、f fix = 20 GHz之雙光注入半導體雷射非線性動態地圖及其局部放大圖之分析 82
三、固定端雷射工作點ξ fix = 0.15、f fix = 20 GHz之雙注入光譜分析 85
4-2-3 單一雷射工作點的主副雷射光頻差固定於10 GHz之雙光注入半導體雷射非線性動態地圖 95
一、大範圍地圖綜覽 95
二、單一注入工作點固定於ξ fix = 0.15、f fix = 10 GHz之雙光注入半導體雷射非線性動態地圖及其局部放大圖之分析 97
三、固定端雷射工作點ξ fix = 0.15、f fix = 10 GHz之雙注入光譜分析 100
4-2-4 單一雷射工作點的主副雷射光頻差固定於0 GHz之雙光注入半導體雷射非線性動態地圖 108
一、大範圍地圖綜覽 108
二、單一注入工作點固定於ξ fix = 0.15、f fix = 0 GHz之雙光注入半導體雷射非線性動態地圖及其局部放大圖之分析 110
三、固定端雷射工作點ξ fix = 0.15、f fix = 0 GHz之雙注入光譜分析 112
4-2-5 單一雷射工作點的主副雷射光頻差固定於–10 GHz之雙光注入半導體雷射非線性動態地圖 118
一、大範圍地圖綜覽 118
二、單一注入工作點固定於ξ fix = 0.1、f fix = - 10 GHz之雙光注入半導體雷射非線性動態地圖及其局部放大圖之分析 119
三、固定端雷射工作點ξ fix = 0.1、f fix = -10 GHz之雙注入光譜分析 122
4-2-6 單一雷射工作點的主副雷射光頻差固定於–20 GHz之雙光注入半導體雷射非線性動態地圖 127
一、大範圍地圖綜覽 127
二、單一注入工作點固定於ξ fix = 0.1、f fix = - 20 GHz之雙光注入半導體雷射非線性動態地圖及其局部放大圖之分析 128
三、固定端雷射工作點ξ fix = 0.1、f fix = -20 GHz之雙注入光譜分析 130
4-2-7 單一雷射工作點的主副雷射光頻差固定於–30 GHZ之雙光注入半導體雷射非線性動態地圖 132
、大範圍地圖綜覽 132
二、單一注入工作點固定於ξ fix = 0.1、f fix = - 30 GHz之雙光注入半導體雷射非線性動態地圖及其局部放大圖之分析 134
4-2-8 固定端雷射工作點於鄰近霍普夫分岔邊界之穩定鎖注區域時的雙光注入半導體雷射非線性動態地圖 137
4-3近雙主雷射光頻差之山峰狀光譜分析 142
第五章 微波譜頻率梳之研究分析 146
5-1 微波譜頻率梳之應用 146
5-1-1校正光學鐘之雷射脈衝相位移 146
5-1-2微波譜頻率梳頻率等間格之特性應用 149
一、倍頻器 149
1.X波段雷達 149
2.GPS信號頻率 149
二、多頻道信號廣播 149
三、超精確頻譜分析儀 149
5-2 雙光注入半導體雷射產生微波譜頻率梳之模擬分析 151
5-2-1微波譜頻率梳之特性分析項目 151
一、振幅變化 152
二、頻梳帶寬 152
三、頻率間距 152
四、單邊帶相位雜訊 152
5-2-2微波譜頻率梳之特性要求 153
5-2-3利用雙光注入半導體雷射系統產生之微波譜頻率梳 153
一、粗調雙注入系統工作點所產生頻率間距3 GHz之微波譜頻率梳 154
1.約略分析可產生較好微波譜頻率梳之雙注入系統工作點位置 154
2.固定主副雷射光頻差、改變注入強度 156
3.固定注入強度、改變主副雷射光頻差 158
二、調整工作點產生不同頻率間距之微波譜頻率梳 160
三、微調雙注入系統工作點產生高品質之微波譜頻率梳 162
第六章 結論與未來展望 165
6-1 結論 165
6-2 未來展望 167
6-2-1嘗試利用多道光注入系統來改善全光頻率轉換之轉換品質 167
6-2-2 使用不同的光注入半導體雷射系統架構來產生微波譜頻率梳 169
一、 一百道光注入半導體雷射產生微波譜頻率梳之模擬分析 169
二、 雙光注入半導體雷射後暨串接注入半導體雷射產生微波譜頻率梳 169
參考文獻 171
參考文獻 [1] T. B. Simpson, J. M. Liu, and K. F. Tai, “Nonlinear Dynamics Induced by External Optical Injection in Semiconductor Lasers,” Quantum Semiclass. Opt., Vol. 9, pp. 765-784, 1997.
[2] T. B. Simpson, J. M. Liu, A. Gavrielides, and P.M.Alsing, “Period-doubling Route to Chaos in a Semiconductor Laser Subject to Optical Injection,” Appl. Phys. Lett., Vol. 64, No. 26, pp.3539-3541, 1994.
[3] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-Doubling Cascades and Chaos in a Semiconductor Laser with Optical Injection,” Physical Review A, Vol. 5, No. 5, pp. 4181-4185, 1995.
[4] V. Kovanisa, A. Gavrielides, T. B. Simpson, and J. M. Liu, “Instabilities and Chaos in Optically Injected Semiconductor Lasers,” Appl. Phys. Lett., Vol. 67, No. 19, pp. 2780-2782, 1995.
[5] S.K. Hwang and J. M. Liu, “Dynamical Characteristics of an Optically Injected Semiconductor Laser,” Optics Communications, Vol. 183, pp. 195-205, 2000.
[6] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth Enhancement and Broadband Noise Reduction in Injection-locked Semiconductor Lasers,” IEEE Photon. Lett., Vol. 7, No. 7, pp. 709-711, 1995.
[7] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation Bandwidth, Noise, and Stability of a Semiconductor Laser Subject to Strong Injection Locking,” IEEE Photon. Technol. Lett., Vol. 9, No. 10, pp. 1325-1327, 1997.
[8] T. B. Simpson and J. M. Liu, ““Enhanced Modulation Bandwidth in Injection-Locked Semiconductor Lasers,” IEEE Photon. Technol. Lett., Vol. 9, No. 10, pp. 1322-1324, 1997.
[9] X. J. Meng, T. Chau, and M. C. Wu, “Experimental Demonstration of Modulation Bandwidth Enhancement in Distributed Feedback Lasers with External Light Injection,” Electron. Lett., Vol. 34, No. 21, pp. 2031-2032, 1998.
[10] Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental Observation of Chirp Reduction in Bandwidth-enhanced Semiconductor Lasers Subject to Strong Optical Injection,” Optics Communications, Vol. 219, pp. 357-364, 2003.
[11] H. F. Chen, J. M. Liu, and T. B. Simpson, “Response Characteristics of Direct Current Modulation on a Bandwidth-enhanced Semiconductor Laser under Strong Injection Locking,” Optics Communications, Vol. 173, pp. 349-355, 2000.
[12] S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3μm Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photon. Technol. Lett. , Vol. 16, pp. 972-974, 2004.
[13] G. P. Agrawal and N. K. Dutta, Semiconductor Lasers. 2nd ed New York: Van Nostrand Reinhold, 1993.
[14] M. Osinski, J. Buus, “Linewidth Broadening Factor in Semiconductor Lasers-an Overview,” IEEE J. Quant. Electron., Vol. 23, No.1, pp. 9-29, 1987.
[15] J. M. Liu and T. B. Simpson, “Four-wave Mixing and Optical Modulation in a Semiconductor Laser,” IEEE J. Quantum Electron., Vol. 30, No. 4, pp. 957-965, 1994.
[16] S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic Microwave Generation and Transmission Using Direct Modulation of Stably Injection-locked Semiconductor Lasers,” Optics Communications, Vol. 284, pp. 3581-3589, 2011.
[17] L. Thévenaz, S. Le Floch, D. Alasia, and J. Tröger, “Novel Schemes for Optical Signal Generation Using Laser Injection Locking with Application to Brillouin Sensing,” Meas. Sci. Technol., Vol. 15, No. 8, pp. 1519-1524, 2004.
[18] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM Upconversion Using an Optically Injected Semiconductor Laser,” Opt. Lett., Vol. 31, No. 15, pp. 2254-2256, 2006.
[19] S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-Optical Frequency Conversion Using Nonlinear Dynamics of Semiconductor Lasers,” Optics Lett., Vol. 34. No. 6, pp. 812-814, 2009.
[20] S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one Oscillation for Photonic Microwave Transmission Using an Optically Injected Semiconductor Laser,” Optics Express, Vol. 15, No. 22, pp. 14921-14935, 2007.
[21] K. M. Cuomo, A. V. Oppenheim and S. H. Strogatz, “Synchronization of Lorenz-Based Chaotic Circuits with Applications to Communications,” IEEE Transactions on circuits and systems-11: analog and digital signal processing, Vol. 40, No. 10, pp. 626-633, 1993.
[22] L. Li and K. Petermann, “Small Signal Analysis of THz Optical-Frequency Conversion in an Injection-Locked Semiconductor Laser,” IEEE Journal of Quantum Electronics, Vol. 29, No. 12, pp. 2988-2994, 1993.
[23] S. Watanabe, T. Naito, and T. Chikama, “Compensation of Chromatic Dispersion in a Single-mode Fiber by Optical Phase Conjugation,” IEEE Photon. Technol. Lett., Vol. 5, No. 1, pp. 92-95, 1993.
[24] X. Q. Qi and J. M. Liu, “Dynamics Scenarios of Dual-Beam Optically Injected Semiconductor Lasers,” IEEE J. Quantum Electron. , Vol. 47, pp. 762-769, 2011.
[25] M. Clofini and R. Meucci, “Controlling Laser Chaos with Selective Feedback,” IEEE C. Quantum Electron. , pp. 33, 1996.
[26] S. Eckehard, G. S. Heinz, Handbook of chaos control. New York: Wiley, 2007.
[27] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-Signal Analysis of Modulation Characteristics in a Semiconductor Laser Subject to Strong Optical Injection,” IEEE J. Quantum Electron., Vol. 32, No. 8, pp. 1456-1468, 1996.
[28] C. H. Henry, “Phase Noise in Semiconductor Lasers,” IEEE Lightwave Technol.,Vol. 4, No. 3, pp. 298-311, 1986.
[29] W. Li, N. H. Zhu, L. X. Wang, J. H. Ke, S. F. Chen, X. Q. Qi, B. H. Zhang, and L. Xie, “Frequency-Pushing Effect in Single-Mode Diode Laser Subject to External Dual-Beam Injection,” IEEE J. Quantum Electron., Vol. 46, No. 5, pp. 796-803, 2010.
[30] R. A. Fisher, Optical Phase Conjugation. New York: Academic Press, 1983.
[31] Y. R. Shen, The Principle of Nonlinear Optics. New York: Wiley, 1984.
[32] S. Cundiff, J. M. Liu, J. Ye, and J. Hall, “RULERS OF LIGHT- A Revolutionary Kind of Laser Light Called an Optical Frequency Comb Makes Possible a More Precise Type of Atomic Clock and Many Other Applications,” Scientieic American, Vol. 75, No. 75, pp. 54-67, 2008.
[33] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible Continuum Generation in Air–Silica Microstructure Optical Fibers with Anomalous Dispersion at 800 nm,” Opt. Lett., Vol. 25, No. 1, pp. 25-27, 2000.
[34] T. C. Li, M. S. Li, P. W. Lin, P. Wang, W. L. Chen, N. F. Liu and Y. Lin, “The Second Cesium Fountain Clock NIM5: Construction and the First Evaluation in 2007,” Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International Conference, pp. 55-57, 2007.
[35] P. Dub´e, A.A. Madej, M. Vainio J. Jiang and D.J. Jones, “Recent Progress on the NRC 88Sr+ Single-Ion Optical Frequency Standard,” 2010 IEEE International Frequency Control Symposium, pp. 65-70, 2010. .
[36] A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck and C. W. Oates, “Sr Lattice Clock at 1 × 10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science, Vol. 319, No. 587, pp. 1805-1808, 2008.
[37] G. A. Pablos-Vega, J. G. Colom-Ustáriz, S. Cruz-Pol, J. M. Trabal, V. Chandrasekar, J. George, and F. Junyent, “Development of an Off-The-Grid X-Band Radar for Weather Applications,” 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1077-1080, 2010.
[38] V. Chandrasekar, E. Gorgucci, S. Lim, and L. Baldini, “Simulation of X-Band Radar Observation of Precipitation from S-Band Measurements,” 2004 IEEE International Geoscience and Remote Sensing Symposium, Vol. 4, pp.2752-2755, 2004.
[39] A. V. Dinh, R. J. Palmer, R. J. Bolton, and R. Mason “Multichannel Multipoint Distribution Service System Synchronization Using Global Positioning System Clock,” Electrical and Computer Engineering, 2000 Canadian Conference on, Vol. 2, pp. 875-879, 2002.
[40] Y. S. Juan and F. Y. Lin, “Microwave-Frequency-Comb Generation Utilizing a Semiconductor Laser Subject to Optical Pulse Injection From an Optoelectronic Feedback Laser,” Optics Lett., Vol. 34, No. 11, pp.1636-1638, 2009.
[41] Y. S. Juan and F. Y. Lin, “Ultra Broadband Microwave Frequency Combs Generated by an Optical Pulse-Injected Semiconductor Laser,” Optics. Express, Vol. 17, No. 21, pp.18596-18605, 2009.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw