進階搜尋


 
系統識別號 U0026-1907201211550500
論文名稱(中文) 電磁式震波產生器之設計開發
論文名稱(英文) Design and Development of Electromagnetic Shock Wave Generator
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 100
學期 2
出版年 101
研究生(中文) 藍旭家
研究生(英文) Md. Ashraful Islam
電子信箱 ashraf.bitr@gmail.com
學號 P46997010
學位類別 碩士
語文別 英文
論文頁數 108頁
口試委員 口試委員-梁勝明
指導教授-林清一
口試委員-李志清
中文關鍵字 震波  高壓脈波產生 
英文關鍵字 Shock Wave  ESWL  ESWT  Electromagnetic  HVPS 
學科別分類
中文摘要 本論文主要提出一種電磁式脈波產生器的設計與開發,可在液體中產生有限振幅的脈衝波。該裝置藉由數個高電壓的電容器,將能量釋放到扁平線圈;同時一個絕緣的金屬盤安裝在一個裝滿水的容器,此容器放置於線圈上方。透過羅倫茲力對金屬盤產生一個渦電流,使線圈產生推離金屬盤的加速度,如同衝擊波的效果,藉由設計好的聚焦鏡,可將此衝擊波的能量聚焦到預先設計好的焦點位置。因此透過理論的分析,並結合擊發電路裝置的設計,最後透過實驗的測試,將此系統完整的開發實現。
英文摘要 This thesis presents the design and development of an electromagnetic shock wave generation based on repetitive triggering method of finite amplitude shock pulse in liquids. This device consists of a high-voltage, 2 to 3-µF, 6-kV capacitor which is discharged to a flat coil. An insulated metal disk is placed in close proximity to the coil and is mounted in a water-filled tube. Lorentz force induced by eddy currents in the disk repluses the disk away from the coil. The disk repulsive acceleration produces a pressure shock wave which is focused to the target using acoustic lens. Theoretical analyses of the electrical and control circuits have been developed with details of components and materials. In this study, a high voltage power circuit is developed as shock wave generator for experiment. By increasing the capacitance to lift energy level, a higher focusing pressure can be achieved. A generalized relationship between the acoustic pressure and capacitance voltage also has been evaluated. The modeled shock wave generator can produced 0.06 to 0.104 mJ/mm2 energy which has a potential application for ESWT, e.g. lipotripsy, messaging and other aesthetic application. However, higher intensity can be achieved by adding extra capacitor to the circuit. Finally, the necessary control signals, acoustic field, peak measured acoustic pressure and shock wave intensity have been measured in experiments.
論文目次 ABSTRACT i
ABSTRACT IN CHINESE ii
CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURE vi
NOMENCLATURE x

CHAPTER I
INTRODUCTION 1
1.1 Introduction 1
1.2 Survey of Shock Wave Generation 2
1.3 Application of Shock Wave 8
1.4 Objectives 9
1.5 Thesis Outlines 9

CHAPTER II
SHOCK WAVE GENERATION, PROPAGATION AND FOCUSING 11
2.1 Introduction 11
2.2 Waves and Shock Waves 12
2.3 Shock Pressure 13
2.4 Shock Relation 13
2.5.1 Equation of State for Fluids 15
2.5.2 Equation of State and Hydrodynamic Relation 17
2.6 Shock Focusing 18
2.6.1 Shock Wave Medium 21
2.6.2 Properties of Shock Liquids 22
2.6.3 Nonlinearity parameter 23
2.7 Shock Wave Focusing Lens 24
2.7.1Modeling of Wave Focusing in Liquid 24
2.7.2 Sound Focusing and Geometrical Acoustics 26
2.7.3 Acoustic lens equation 29
2.7.4 Design and Materials 31
2.7.5 Attenuation 34
2.8 Parabola Focusing 36
2.9 Optical Performance Evaluation of the Designed Lenses 39

CHAPTER III
THE ELECTROMAGNETIC SHOCK WAVE GENERATOR 42
3.1 Introduction 42
3.2 Electromagnetic Force and Energy 42
3.3 The Working Principle of Our Shock Wave Generator 44
3.4 High Voltage system 46
3.4.1 High Voltage Capacitors 49
3.4.2 Trigger Module 50
3.4.3 Spark Gap 51
3.4.4 Other High –Voltage Devices 52
3.5 The equivalent circuits 53
3.6 Theoretical Analysis 55
3.7 EM shock generators efficiency factor 58
3.7.1 The Parameter of the Shock Wave Generator 58
3.7.2 Circuit Self-inductance 58
3.7.3 The shock Wave Coil and Inductance 59
3.7.4 Number of Turns 61
3.7.5 Membrane Material and Thickness 62
3.7.6 Insulation Materials and Thickness 64
3.7.7 Efficiency of Shock wave generator 66
3.8 Construction of Shock wave generator 67

CHAPTER IV
EXPERIMENT AND DATA ANALYSIS 69
4.1 Experimental Setup 69
4.2 The Time Sequence of Control Signal 71
4.3 Pressure Measurement 78
4.4 Pressure Measurement with Acoustic Lens 83
4.5 Pressure Pulse in FC Fluid 89
4.6 Acoustic Intensity 93
4.7 Acoustic Lens Evaluation 95
4.8 Development of Voltage Pressure Relation 95

CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS 98
5.1 Conclusions and Recommendations 98

REFERENCES 101

參考文獻 [1] Rassweiler, J., T. Knoll, K. U. Kohrmann and J. A. McAteer, “Shock Wave Technology and Application: An Update,” European Urology, Vol. 59, 784 – 796, 2011.
[2] Rassweiler, J., and P. Alken, “ESWL 90-state of art, limitations and future trends of shock – wave lithotripsy,” Urol. Res., Vol. 18, 13-23, 1990.
[3] Meyer, W., W. and D. Jonas, “First experiences with the storz Modulith lithotripter,” Proceedings of the 7th world congress on Endourology and ESWL, 27-30, 1989.
[4] Averkiou, M.A. and R. O. Cleveland, “Modeling of an electrohydraulic lithotripter with the KZK equation,” Journal of the Acoustical Society of America, Vol. 106, No.1, 102–112, 1999.
[5] Riedlinger, R. E., “Self–focusing piezoelectric high–power sound–pulsar for painless disintegration of urinary canal,” Ultrasonics, International 87 Conference Proceedings, 220–225.
[6] Sheir, K.Z., K. Madbouly and E. Elosobky, “Prospective randomized comparative study of the effectiveness and safety of electrohydraulic and electromagnetic extracorporeal shock wave lithotripters,” J. Urol., Vol. 170, 389-392, 2003.
[7] Rassweiler, J. J., G.G. Tailly, and C. Chaussy, “Progress in lithotripter technology,” EAU Update Ser., Vol. 3, 17–36, 2005.
[8] Reichenberger, H., “Lithotripter Systems,” Proceedings of IEEE, Vol. 76, No. 9, 1988.
[9] Liang, M., S., K.H. Chow, I. M., Y. R. Pu and C. C. Chan, “Design and fabrication of a shock wave generator for musculoskeletal disorder,” Biomedical Engineering Application, Basis & Communication, Vol. 18, No. 1, 24-32, 2006.
[10] Wess, O., E.H. Marlinghaus and J. Katona, “A new design of an optimal acoustic source for extracorporeal lithotripsy,” Joachim B., Biliary Lithotripsy II, Year Book Medical Publishers, Inc. Chicago, 211-214, 1990.
[11] Chaussy, C., W. Brendel, et al., “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 2, 1265-1268, 1980.
[12] Chaussy, C., E. Schmiedt, et al., “Extracorporeal shock wave lithotripsy: New aspects in the treatment of kidney stone disease,” 1982.
[13] Chaussy, C. and G. J. Fuchs, “Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy.” J. Urol., Vol. 141, 782-792, 1989.
[14] Kohrmann, K. U., “The future of swl: A global perspective” AIP Conference Proceedings,Indianapolis, IN., 2007.
[15] Delius, M., “Lithotripsy,” Ultrasound Med. Biol. Vol. 26, SUPPL. 1, 55-58, 2000.
[16] Lingeman, J. E., S. C. Kim, et al., “Shockwave lithotripsy: Anecdotes and insigts,” J. Endourol., Vol. 17, 687-693, 2003.
[17] Daniel, M. P. and J. R. Burns, “Renal function immediately after piezoelectric extracorporeal lithotripsy,” J. Urol., Vol. 44, No. 1, 10-12, 1990.
[18] Bierkens, A. F., A. J. M. Hendrikx, et al., “Efficacy of second generation lithotripters, A multicenter comparative study of extracorporeal shock wave lithotripsy treatments with the siemens lithostar, dornier HM4, wolf piezolith 2300, direx tripter x-1 and breakstone lithotripters,” J. Urol., Vol. 148, No. 3 II, 1052-1057, 1992.
[19] Gerber, R., U. E. Studer, et al., “Is newer always better? A comparative study of 3 lithotriptor generations,” J. Urol., Vol. 173, No. 6, 2013-2016, 2005.
[20] Lingeman, J. E., S. C. Kim, et al., “Shockwave lithotripsy: Anecdotes and insights,” J. Endourol, Vol. 17, No. 9, 687-693, 2003.
[21] Zhou, Y. F., F. H. Cocks, et al., “Innovations in shock wave lithotripsy technology: Updates in experimental studies,” J. Urol., Vol. 172, No. 5, 1892-1898, 2004.
[22] Cleveland, R. and J. A. McAteer, “The physics of shock wave lithotripsy,” 317-332, 2005.
[23] Eisenmenger, W., “The mechanism of stone fragmentation in ESWL,” Ultrasound in Med. & Bio., Vol. 27, No. 5, 683-693, 2001.
[24] Ison, K.T., Physical and technical introduction to lithotripsy, Lithotripsy II, Text book of second generation extracorporeal lithotripsy, London BDI publishing Chapter 2, 7-12, 1987.
[25] Kramme, R., K. P. Hoffman and R. S. Pozos, Springer Handbook of Medical Technology, Springer, 2011.
[26] Delius, M, “Medical application and bio effects of extracorporeal shock waves,” Shock Waves, Vol. 4, 55-72, 1994.
[27] Delius, M, M. Muller, A. Vogel and W. Brendel, “Extracporeal shock waves: properties and principles of generation biliary lithotripsy,” London Year Book of medical Publishers, Inc., 9-15, 1989.
[28] Andriyanov, Y. V., O. N.Andriyanova, P. V. Kozodoy and V. P. Smirnov, “The electromagnetic type focusing shock wave generators for medical and biology application,’’ IEEE Trans on Pulsed Power Conf., Vol. 2, No. 27-30, 1410-1413, 1999.
[29] Eisenmenger, W., “Experimentelle bestimmung der stossfrontdicke aus dem akustischen frequenzspektrum elecktromagnetisch erzeugter stosswellen in flussigkeiten bei ein em stossdruckbereich von 10 atm bis 100 atm,” Acustica , Vol. 14, No. 4, 187-204, 1964.
[30] Mortimer, B. J. P and Skews, B. W, “An electromagnetic liquid shock wave generator for the production of a pulsed water jet,” J. of Acoust. Soc. Am., Vol. 100, No. 6, 3548-3553, 1996.
[31] Coleman, A. J. and J. E. Saunders, “A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy,” Ultrasonics, Vol. 31, No. 2, 75-89, 1993.
[32] Itoh, S., S. Kubota, S. Nagano and K. Takashima, et al., “ Converging underwater shock wave for metal processing,” Proceedings of 19th International Symposium on SHOCK WAVES (Marselle), Springer, Berlin, 289-294, 1993.
[33] Eric, A., Elster, M. D., et al., “Extracorporeal Shock Wave Therapy for Nonunion of the Tibia” J Orthop Trauma, Vol. 24, Number 3, 2010.
[34] Wang, C.J, and Y. R. Kuo, et al, “Extracorporeal Shockwave Treatment for Chronic Diabetic Foot Ulcers” J. of Surgical Res., Vol. 152, No. 1, 96-103 , 2009.
[35] Wang, C. J., “An overview of shock wave therapy in musculoskeletal disorders,” Cheng Gung Med. J. 26, 220-232, 2003.
[36] Wang C. J., H. S Cheng, C.E. Chen and K.D. Yang, “Treatment of nonunions of long bone fracture with shock waves,” Clin. Orthop. Relat. Res., Vol. 387, 95-101, 2001.
[37] Wang, C. J., H. Y. Huang and C. P. Pai, “Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment on dogs,” J. Foot Ankle surg., Vol. 41, 16-22, 2002.
[38] Loske, A. M, U. A. Alvarez, C. Hernandez-Galicia, E. Castano-Tostada and F. E. Orieto, “Bacterial effect on underwater shock wave on Escherichia coli.,” Vol. 3, 321-327, 2002.
[39] Shimokawa ,H, K. Ito, Y. Fukumoto and S. Yasuda, “ Extra-corporeal cardiac shock wave therapy for ischemic heart disease,” Shock waves, Vol. 17, 387-395, 2008.
[40] Hilton, L., “Study of shock wave therapy helps heal various skin lesions,” Derma. Times, Vol. 26, 28-33, 2005.
[41] J. S. Stainberg, A. Stojadinovic, E, Elster, G. Peoples and C. E. Attinger, “Is there a role for ESWT in wound care?” Podiatry Today, Vol. 19, 62-68, 2006.
[42] S. A. Teitelbaum, J. L. Burns, J. Kubota, H. Matsuda, M. J. Otto, Y. Shirakabe, Y. Suzuki and S.A. Brown, “Naninvasive body contouring by focused ultrasound: safety and efficiency of the contour I device in a multi-center, controlled, clinical study,” Plast. Reconst. Surg., Vol. 120, 779-789, 2007.
[43] S. M. Liang, C. N. Yeh, J. J. Yan, L. R. Wan and J. W. Lee, “An in-vitro experiment on lysing adipose tissue by shock waves,” J. Med. Biol. Eng., Vol. 28, 203-209, 2008.
[44] S. M. Liang, K. F. Zheng, J.J. Yan, R.R. Wan, and C.Y. Wen, “Animal Study on Lysing Adipose Tissues by Shock Waves,” Journal of Medical and Biological Engineering, Vol. 30, No. 3, 145-151, 2010.
[45] Buizza, A., T. Dellaquila, et al., “The performance of different pressure pulse generators for extracorporeal lithotripsy - a comparison based on commercial lithotripters for kidney-stones,” Ultrasound Med. Biol., Vol.21, No.2, 259-272, 1995.
[46] Graber, S. F., H. Danuser, et al., “A prospective randomized trial comparing two lithotriptors for stone disintegration and induced renal trauma,” J. Urol., Vol. 169, No. 1, 54-57, 2003.
[47] Earnshaw, S., “On the mathematical theory of sound,” Phil. Trans. R. Soc., London, Vol. 150, 133-148, 1858.
[48] Muller, M., “Stosswellenfokussierung in Wasser”, Thesis, Doktor-Ingenieur, Technischen Hochschule Aachen, 1987.
[49] Pierce, A. D., “Acoustics,” Acoustic society of America, New York, 574-576, 1989.
[50] Sehgal, C. M, “Non-linear ultrasonics to determine molecular properties of pure liquids”, Ultrasonics, Vol. 33, No. 2, 155-161, 1995.
[51] Beyer, R. T, “Nonlinear acoustics,” Naval Ship systems command, Washington DC., 98-105, 1974.
[52] Copens, A.B., Beyer, R. T., Seiden, M. B., et al., “Parameter of nonlinearity in fluid II,” J. Acoust. Soc. Am., Vol. 38, 797-804, 1965.
[53] Everbach, E. and Apfel, R. E., “An interferometry technique for B/A measurement”, J. Acoust. Soc. Am., Vol. 98, No. 6, 3428-3438, 1995.
[54] Madigosky, W. M., Rosenbaun, I and Lucas R., “Sound velocities and B/A in fluorocarbon fluids and in several low density solids,” J. Acoust. Soc. Am., Vol. 69, No. 6, 1639-1643, 1981.
[55] Sturtevant, B. and Kulkarny, V. A., “The focusing of weak shock waves” J. Fluid Mech, Vol. 73, 651, 1976.
[56] Takayama, K., Esashi, H. and Sanda, N., “Propagation and focusing of spherical shock waves produced by underwater micro explosions” Proceedings of the 14th (Sydney), New South Wales University Press, Sydney, 553-562, 1983.
[57] Mortimer, B. J. P., Skews, B. W. and Felthun, L. T., “Shock wave focusing using a slow Sound speed fluorocarbon liquid.”, In: Skwes BW(ed) Proceedings of the 12th International Mack Reflection Symposium, University of the Witwatersrand, 183-189, 1996.
[58] Madigosky, W.M., I. Rosenbaum and R. Lucas, “Sound velocities and B/A in flurocarbon fluids and in several low density solids,” J. Acoust. Soc. Am., Vol. 69, No.6, 1639-1643, 1981.
[59] Musatov, A. G. and Sapozhnikov, O. A., “Non-linear effects and process of focusing of acoustic pulse with shock front,” Acoust. Phys, Vol.39, No. 3, 266-269, 1993.
[60] Averkiou, M. A., “Experimental investigation of propagation and reflection phenomena in finite amplitude sound beam” PhD Dissertation, University of Texas at Austin, 1994.
[61] Hamilton, M. F., “Transient axial solution for the reflection of a spherical wave from a Concave ellipsoidal mirror,” J. Acoust. Soc. Am., Vol. 93, No. 3, 1256-1266, 1993.
[62] Saozhnikov, O. A, “Focusing of high-intensity acoustics pulse,” Sov. Phys. Acoust., Vol. 37, No. 4, 395-400, 1991.
[63] Averkiou, M. A. and R. O. Cleveland, “Modeling of an electrohydraulic lithotripter with the kzk equation,” J. Acoust. Soc. Am, Vol. 106, No. 1, 102-112, 1999.
[64] Zhou, Y. F. and P. Zhong, “The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter,” J. Acust. Soc. Am., Vol. 119, No. 6, 3625-3636, 2006.
[65] Iloreta, J. I., Y. F. Zhou, et al., “Assessment of shock wave lithotripters via cavitation Potential,” Physics of Fluids, Vol. 19, No. 8, 2007.
[66] Ginter, S., M. Liebler, et al., “Full-wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids,” J. Acoust. Soc. Am., Vol. 111, No. 5, 2049-2059, 2002.
[67] Beaver, W. L., D. H. Dameron, et al., “Ultrasonic imaging with an acoustic lens,” IEEE Transactions on Sonics and Ultrasonic, SU-24, No. 4, 235-243, 1977.
[68] Folds, D. L., “Focusing properties of solid ultrasonic cylindrical lenses,” Journal of the Acoust. Soc. of Am., Vol. 53, No. 3, 826-834, 1973.
[69] Fink, K., “Computer simulation of pressure fields generated by acoustic lens beam forms,” Master Thesis of Science in Electrical Engineering Univ., Washington, 1994.
[70] Folds, D. L., “Status of ultrasound lens development,” Underwater Acoustic and Signal processing, 263-279, 1981.
[71] Nakamura, T., Y. Sato, et al., “Sound pressure fields focused using biconcave acoustic lens for normal incidence,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 43(5 B), 3163-3168, 2004.
[72] Sato Y, Y, A. Miazaki, et al., “Design of an Absolutely Aplanatic Acoustic Lens,” Japanese Journal of Applied Physics, Vol. 46, No. 7B, 4982–4989, 2007.
[73] Kamakura, T., T. Ishiwata, et al., “Model equation for strongly focused finite-amplitude sound beams,” Journal of Acoustical Society of America, Vol. 107, No. 6, 3035-3046, 2000.
[74] Hill, C. R., J. C. Bamber, et al., Physical principles of medical ultrasonics: Basic acoustic theory, Wiley, 3-40, 2004.
[75] Lochab J. and V.R. singh, “Acoustics behavior of plastics for medical application,” Indian journal of pure and applied science, Vol. 42, 595-599, 2004.
[76] Tranóczy T, “Sound focusing lenses and waveguides,” Ultrasonics, Vol. 3, 115–127, 1965.
[77] Eisenmenger, W., “Eine elektromagnetische Impulsschallquelle zur Erzeugung von Drauckstössen in Flüssigketien und Festkörpern,” In: cremer L(ed) Procedings of the 3rd International Congress of Acoustics-Stuttgart. Elsevier, Amsterdam, 326-329, 1959.
[78] Eisnmenger W., “Elektrmagnetische Erzeugung von ebenen Drauckstössen in Flüssigketien,” Acoustica, Vol. 12, 185-202, 1962.
[79] V. V. Filatov, “Effectiveness of the repulsion of electromagnetic coils with strength and magnetic field limitations,” Tech. Pys., Vol. 2, No. 5, 569-571, 1997.
[80] Carnell M. T., Alcock R. D., Emmony D. C., “Optical imaging of shock waves produced by a high-energy electromagnetic Transducer,” Phys. Med. Biol., Vol. 38, 1577-1588, 1993.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw