進階搜尋


下載電子全文  
系統識別號 U0026-1907201115391000
論文名稱(中文) 氮摻雜鑽石薄膜之電性分析及其電化學應用
論文名稱(英文) Nitrogen-Doped Diamond films: Electrical Properties and its Electrochemical Applications
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 99
學期 2
出版年 100
研究生(中文) 方偉成
研究生(英文) Wei-Cheng Fang
學號 Q16981200
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-曾永華
口試委員-劉全璞
口試委員-黃貞翰
中文關鍵字 氮摻雜鑽石薄膜  鑽石電極  電化學應用 
英文關鍵字 Nitrogen doped diamond  diamond electrode  electrochemistry 
學科別分類
中文摘要 鑽石擁有許多特性,例如優異的硬度、良好的化學穩定性、極佳的熱傳導特性,最重要的是它的生物相容性可減少用於醫療器材上與人體產生不必要的黏附和排斥反應,使用鑽石鍍膜的電燒刀預計可以方便術後清洗除菌且可重複使用。更進一步利用摻雜鑽石的導電、熱敏、電化學特性結合成複合式鑽石電極。
本論文將介紹氮摻雜鑽石製備過程,利用改變氮氣比例、製程壓力、載台高度和甲烷比例來進行調整最佳化參數,製備完成的鑽石薄膜以掃描式電子顯微鏡(SEM)、可見光及紫外光拉曼光譜分析(Visible and UV Raman spectroscopy)、原子力顯微鏡(AFM)、四點探針(Four probe measurement)和霍爾量測(Hall measurement)初步量測其表面形貌、薄膜結構分析、表面粗糙度、薄膜電性和載子濃度。接著將氮摻雜薄膜製備成電極進行電化學測試,比較不同參數下的鑽石薄膜在0.01M赤血鹽/黃血鹽和0.1M氯化鉀混和溶液,以及0.1M硫酸溶液中的特性。
英文摘要 Diamond has many excellent properties, such as hardness, chemical inertness, and good thermal conductivity. It is also biocompatible, can avoid sticking of tissue and is therefore useful for medical applications and electrochemical. It can be expected that medical tools with diamond coatings are easy to clean for re-use. Furthermore, the properties of electrical conductivity, negative temperature coefficient of semiconductor diamond and excellent electrochemistry can be integrated with diamond potentiometric electrodes.
In this paper, nitrogen doped diamond films were grown by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) with gas mixtures of methane, argon, and nitrogen. By varying the concentration of nitrogen, pressure, stage height and the concentration of methane to the deposition condition is optimized. Diamond films are characterized by Scanning Electron Microscope(SEM), visible and UV Raman spectroscopy, Atomic force microscope(AFM), four-probe measurement and Hall measurement to reveal the morphology, film compositions, surface roughness, electrical conductivity and carrier concentration, respectively. Electrochemical properties of diamond films are characterized by cyclic voltammetry in two kinds of electolytes,0.01 M Fe(CN)6-3/-4+0.1 M KCl and 0.1 M H2SO4.
論文目次 摘要... .......................................................... I
Abstract ........................................................ II
誌謝 ........................................................... III
表目錄 ......................................................... VII
圖目錄 ........................................................ VIII
第一章 緒論 ...................................................... 1
1.1 前言 ................................................................... 1
1.2 鑽石介紹 ............................................................... 2
1.2.1 鑽石簡介 ....................................................... 2
1.2.2 鑽石特性及其應用 ............................................... 3
第二章 文獻回顧與理論基礎 ........................................ 7
2.1 CVD原理 ............................................................... 7
2.1.1 CVD機台介紹 .................................................... 7
2.1.2 微波電漿化學氣相沉積法(Microwave Plasma Enhanced Chemical Vapor Deposition, MPECVD) ................................................... 8
2.2 CVD鑽石介紹 ........................................................... 9
2.2.1 鑽石種類介紹 ................................................... 9
2.2.2 種晶前處理介紹 ................................................ 11
2.2.3 反應氣體介紹 .................................................. 15
2.2.4 製程溫度影響 .................................................. 20
2.2.5 製程壓力影響 .................................................. 22
2.2.6 鑽石摻雜介紹 .................................................. 23
2.3 氮摻雜鑽石介紹 ........................................................ 24
2.3.1 表面形貌修飾 .................................................. 24
2.3.2 增加導電性質 .................................................. 25

2.4 摻雜鑽石應用 .................................................... 28
2.4.1 電子場發射 .................................................... 28
2.4.2 電化學分析 .................................................... 31
2.4.3 醫療器材應用 .................................................. 35
第三章 實驗流程與實驗儀器介紹 ................................... 38
3.1 實驗流程 .............................................................. 38
3.2 鑽石薄膜製程 .......................................................... 38
3.2.1 基板選擇與清洗(Clean) ......................................... 38
3.2.2 種晶(Seeding) ................................................. 39
3.2.3 微波電漿化學氣相沉積系統 ...................................... 41
3.2.4 氮摻雜鑽石薄膜沉積步驟 ........................................ 45
3.3 鑽石薄膜分析 .......................................................... 46
3.3.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) ........... 46
3.3.2 拉曼光譜分析(Raman spectroscopy) .............................. 47
3.3.3 原子力顯微鏡(Atomic force microscope, AFM) .................... 50
3.3.4 四點探針(Four probe measurement) .............................. 51
3.3.5 霍爾量測(Hall measurement) .................................... 52
3.4 電化學測試 ............................................................ 53
3.4.1 電極製備 ...................................................... 53
3.4.2 溶液製備 ...................................................... 53
3.4.3 恆電位儀 ...................................................... 53

第四章 結果與討論 ............................................... 55
4.1 氮摻雜鑽石薄膜結果 .................................................... 55
4.1.1 改變氮氣比例 .................................................. 55
4.1.2 改變壓力條件 .................................................. 60
4.1.3 載台高度 ...................................................... 64
4.1.4 甲烷濃度 ...................................................... 67
4.2 電化學應用 ............................................................ 75
第五章 結論與未來展望 ........................................... 78
參考文獻 ........................................................ 80
參考文獻 [1] http://cnst.rice.edu/images/allotropes.jpg.
[2] S. T. Lee, et al., "CVD diamond films: nucleation and growth," Materials Science & Engineering R-Reports, vol. 25, pp. 123-154, Jul 30 1999.
[3] J. C. Angus, "Diamond and Diamond-Like Films," Thin Solid Films, vol. 216, pp. 126-133, Aug 28 1992.
[4] M. N. Yoder, Synthetic Diamond: Emerging CVD Science and Technology: John Wiley & Son, 1993.
[5] 宋健民, "工業材料," 1995.
[6] Y. Gurbuz, et al., "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 49, pp. 1055-1070, Jul 2005.
[7] P. M. Menon, et al., "Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films," Diamond and Related Materials, vol. 8, pp. 101-109, Jan 1999.
[8] P. W. May, "Diamond thin films: a 21st-century material," Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol. 358, pp. 473-495, Jan 15 2000.
[9] X. Xiao, et al., "Low temperature growth of ultrananocrystalline diamond," Journal of Applied Physics, vol. 96, pp. 2232-2239, Aug 15 2004.
[10] A. V. Sumant, et al., "Ultrananocrystalline diamond film as a wear-resistant and protective coating for mechanical seal applications," Tribology Transactions, vol. 48, pp. 24-31, Jan-Mar 2005.
[11] O. Auciello, et al., "Are diamonds a MEMS' best friend?," Ieee Microwave Magazine, vol. 8, pp. 61-75, Dec 2007.
[12] A. V. Sumant, et al., "Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications," Mrs Bulletin, vol. 35, pp. 281-288, Apr 2010.
[13] D. S. Li, et al., "Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD," Solid State Ionics, vol. 179, pp. 1263-1267, Sep 15 2008.
[14] O. A. Williams, et al., "Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond," Diamond and Related Materials, vol. 15, pp. 654-658, Apr-Aug 2006.
[15] M. A. Prelas, G. Popovici and L.K. Bigelow, Handbook of Industrial Diamonds and Diamond Films: Marcel Dekker Inc, 1998.
[16] J. Robertson, "Mechanism of Bias-Enhanced Nucleation and Heteroepitaxy of Diamond on Si," Diamond and Related Materials, vol. 4, pp. 549-552, May 1 1995.
[17] O. Shenderova, et al., "Seeding slurries based on detonation nanodiamond in DMSO," Diamond and Related Materials, vol. 19, pp. 260-267, Feb-Mar 2010.
[18] I. N. Lin, et al., "Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature," Diamond and Related Materials, vol. 15, pp. 1779-1783, Nov-Dec 2006.
[19] R. N. Singh and D. Das, "A review of nucleation, growth and low temperature synthesis of diamond thin films," International Materials Reviews, vol. 52, pp. 29-64, Jan 2007.
[20] M. Frenklach, "The Role of Hydrogen in Vapor-Deposition of Diamond," Journal of Applied Physics, vol. 65, pp. 5142-5149, Jun 15 1989.
[21] Y. K. Liu, et al., "Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon," Diamond and Related Materials, vol. 13, pp. 1859-1864, Oct 2004.
[22] D. Zhou, et al., "Control of diamond film microstructure by Ar additions to CH4/H-2 microwave plasmas," Journal of Applied Physics, vol. 84, pp. 1981-1989, Aug 15 1998.
[23] O. A. Williams, et al., "Growth, electronic properties and applications of nanodiamond," Diamond and Related Materials, vol. 17, pp. 1080-1088, Jul-Oct 2008.
[24] M. Sternberg, et al., "Carbon dimers on the diamond (100) surface: Growth and nucleation," Physical Review B, vol. 68, Nov 2003.
[25] C. J. Tang, et al., "Role of oxygen additive on hydrogen impurity incorporation in nanocrystalline diamond films fabricated by microwave plasma chemical vapor deposition," Physica Status Solidi a-Applications and Materials Science, vol. 206, pp. 2816-2821, Dec 2009.
[26] Y. Liou, et al., "The Effect of Oxygen in Diamond Deposition by Microwave Plasma Enhanced Chemical Vapor-Deposition," Journal of Materials Research, vol. 5, pp. 2305-2312, Nov 1990.
[27] D. Das, et al., "Effect of oxygen on growth and properties of diamond thin film deposited at low surface temperature," Journal of Vacuum Science & Technology A, vol. 26, pp. 1487-1496, Nov 2008.
[28] F. Silva, et al., "Microwave engineering of plasma-assisted CVD reactors for diamond deposition," Journal of Physics-Condensed Matter, vol. 21, Sep 9 2009.
[29] K. Okano, et al., "Characterization of Boron-Doped Diamond Film," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 28, pp. 1066-1071, Jun 1989.
[30] R. Locher, et al., "Nitrogen Stabilized (100) Texture in Chemical-Vapor-Deposited Diamond Films," Applied Physics Letters, vol. 65, pp. 34-36, Jul 4 1994.
[31] S. Jin and T. D. Moustakas, "Effect of Nitrogen on the Growth of Diamond Films," Applied Physics Letters, vol. 65, pp. 403-405, Jul 25 1994.
[32] E. D. Specht, et al., "X-Ray and Optical Characterization of 3 Growth Morphologies of Cvd Diamond Films," Journal of Crystal Growth, vol. 114, pp. 38-46, Oct 1991.
[33] C. Wild, et al., "Chemical-Vapor-Deposition and Characterization of Smooth (100)-Faceted Diamond Films," Diamond and Related Materials, vol. 2, pp. 158-168, Mar 31 1993.
[34] C. Wild, et al., "Oriented Cvd Diamond Films - Twin Formation, Structure and Morphology," Diamond and Related Materials, vol. 3, pp. 373-381, Apr 1994.
[35] J. E. Gerbi, et al., "Electrical contacts to ultrananocrystalline diamond," Applied Physics Letters, vol. 83, pp. 2001-2003, Sep 8 2003.
[36] S. Bhattacharyya, et al., "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films," Applied Physics Letters, vol. 79, pp. 1441-1443, Sep 3 2001.
[37] J. Birrell, et al., "Bonding structure in nitrogen doped ultrananocrystalline diamond," Journal of Applied Physics, vol. 93, pp. 5606-5612, May 1 2003.
[38] D. Zhou, et al., "Synthesis and electron field emission of nanocrystalline diamond thin films grown from N-2/CH4 microwave plasmas," Journal of Applied Physics, vol. 82, pp. 4546-4550, Nov 1 1997.
[39] G. Palumbo, et al., "On the Contribution of Triple Junctions to the Structure and Properties of Nanocrystalline Materials," Scripta Metallurgica Et Materialia, vol. 24, pp. 1347-1350, Jul 1990.
[40] T. D. Corrigan, et al., "The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond," Diamond and Related Materials, vol. 11, pp. 43-48, Jan 2002.
[41] C. Bandis and B. B. Pate, "Photoelectric-Emission from Negative-Electron-Affinity Diamond(111) Surfaces - Exciton Breakup Versus Conduction-Band Emission," Physical Review B, vol. 52, pp. 12056-12071, Oct 15 1995.
[42] M. W. Geis, et al., "Electron Field-Emission from Diamond and Other Carbon Materials after H-2, O-2 and Cs Treatment," Applied Physics Letters, vol. 67, pp. 1328-1330, Aug 28 1995.
[43] K. Okano, et al., "Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond," Nature, vol. 381, pp. 140-141, May 9 1996.
[44] W. P. Kang, et al., "Field emission from nanodiamond grown with 'ridge' type geometrically enhanced features," Diamond and Related Materials, vol. 17, pp. 790-793, Apr-May 2008.
[45] K. Subramanian, et al., "The effect of growth rate control on the morphology of nanocrystalline diamond," Diamond and Related Materials, vol. 14, pp. 404-410, Mar-Jul 2005.
[46] W. P. Kang, et al., "Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH4/H-2/N-2 plasma-deposited nanodiamond," Diamond and Related Materials, vol. 15, pp. 1126-1131, Apr-Aug 2006.
[47] R. S. Takalkar, et al., "Field emission characteristics of diamond edge-shaped emitters fabricated using nitrogen-methane plasma," Diamond and Related Materials, vol. 15, pp. 329-333, Feb-Mar 2006.
[48] K. Subramanian, et al., "Nanodiamond planar lateral field emission diode," Diamond and Related Materials, vol. 14, pp. 2099-2104, Nov-Dec 2005.
[49] W. P. Kang, et al., "Nanodiamond lateral comb array field emission diode for high current applications," Diamond and Related Materials, vol. 15, pp. 1994-1997, Nov-Dec 2006.
[50] K. Subramanian, et al., "Geometrical field enhancement on micropatterned nanodiamond film for electron emissions," Diamond and Related Materials, vol. 15, pp. 417-425, Feb-Mar 2006.
[51] W. P. Kang, et al., "Nanodiamod lateral device field emission diode fabricated by electron beam lithography," Diamond and Related Materials, vol. 19, pp. 252-255, Feb-Mar 2010.
[52] Q. Y. Chen, et al., "Morphological and microstructural stability of boron-doped diamond thin film electrodes in an acidic chloride medium at high anodic current densities," Journal of the Electrochemical Society, vol. 144, pp. 3806-3812, Nov 1997.
[53] G. M. Swain, "The Susceptibility to Surface Corrosion in Acidic Fluoride Media - a Comparison of Diamond, Hopg, and Glossy Carbon Electrodes," Journal of the Electrochemical Society, vol. 141, pp. 3382-3393, Dec 1994.
[54] J. S. Xu, et al., "Boron-doped diamond thin-film electrodes," Analytical Chemistry, vol. 69, pp. A591-A597, Oct 1 1997.
[55] S. Basu, et al., "Electrochemical sensing using nanodiamond microprobe," Diamond and Related Materials, vol. 15, pp. 269-274, Feb-Mar 2006.
[56] W. P. Kang, et al., "A novel "coral" carbon microprobe with and without N-2 incorporation," Diamond and Related Materials, vol. 15, pp. 1844-1848, Nov-Dec 2006.
[57] W. R. H. P.T. Kissinger, Laboratory Techniques in Electroanalytical Chemistry: Marcel Dekker, Inc., 1996.
[58] W. P. Kang, et al., "Nanodiamond film with 'ridge' surface profile for chemical sensing," Diamond and Related Materials, vol. 17, pp. 896-899, Apr-May 2008.
[59] F. Scholz, Electroanalytical Methods: Guide to Experiments and Applications
New York: Springer, 2002.
[60] P. R. Chalker, et al., "Degradation Mechanisms of Passivated and Unpassivated Diamond Thermistors," Diamond and Related Materials, vol. 2, pp. 1100-1106, Apr 13 1993.
[61] M. Aslam, et al., "Boron-Doped Vapor-Deposited Diamond Temperature Microsensors," Sensors and Actuators a-Physical, vol. 45, pp. 131-137, Nov 1994.
[62] P. R. Chalker, et al., "Physical properties of diamond for thermistors and pressure transducers," Semiconductor Science and Technology, vol. 18, pp. S113-S116, Mar 2003.
[63] K. Miyata, et al., "Fabrication and Characterization of Diamond Film Thermistors," Review of Scientific Instruments, vol. 65, pp. 3799-3803, Dec 1994.
[64] R. Muller, et al., "Application of CVD-diamond for catheter ablation in the heart," Diamond and Related Materials, vol. 13, pp. 1080-1083, Apr-Aug 2004.
[65] P. Gluche, et al., "Actuator sensor technology on "electronic grade" diamond films," Microsystem Technologies, vol. 5, pp. 38-43, Oct 1998.
[66] C. S. Wang, et al., "Effect of N-2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films," Diamond and Related Materials, vol. 19, pp. 147-152, Feb-Mar 2010.
[67] R. Pfeiffer, et al., "Evidence for trans-polyacetylene in nano-crystalline diamond films," Diamond and Related Materials, vol. 12, pp. 268-271, Mar-Jul 2003.
[68] A. Kumar, et al., "Electrical contacts to nitrogen incorporated nanocrystalline diamond films," Diamond and Related Materials, vol. 17, pp. 2037-2040, Dec 2008.
[69] O. Ternyak, et al., "Study on diamond films with ultra high nucleation density deposited onto alumina, sapphire and quartz," Diamond and Related Materials, vol. 14, pp. 323-327, Mar-Jul 2005.
[70] V. I. Merkulov, et al., "uv studies of tetrahedral bonding in diamondlike amorphous carbon," Physical Review Letters, vol. 78, pp. 4869-4872, Jun 23 1997.
[71] Bard, In Electrochemical Methods. New York: Wiley, 1980.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw