進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1907201023180100
論文名稱(中文) 發展具心肌保護的功能性聚乳酸-甘醇酸奈米粒子於心肌梗塞後
論文名稱(英文) The development of functionalized poly(lactic-co-glycolic)acid nanoparticles for cardioprotection after infarction
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 鄭閔鳳
研究生(英文) Min-Feng Cheng
學號 p8697406
學位類別 碩士
語文別 英文
論文頁數 41頁
口試委員 指導教授-張志涵
共同指導教授-謝清河
口試委員-王盈錦
中文關鍵字 心肌梗塞  類胰島素生長因子  聚乳酸-甘醇酸奈米粒子 
英文關鍵字 Myocardial infarction  PLGA nanoparticles  IGF-1  cardiomyocytes 
學科別分類
中文摘要 心臟衰竭是已開發國家中人民的主要死因。造成心臟衰竭主要原因是冠狀動脈阻塞使得血液無法正常供給心肌,導致心肌細胞壞死和凋亡。因此,如何防止缺血傷害後心肌細胞的死亡,是預防乃至於治療心臟衰竭的關鍵因素。

已有許多文獻報告指出類胰島素生長因子(IGF)在心肌梗塞後是一個可以保護心肌細胞免於死亡的蛋白質,但因其分子量很小,直接注射於心肌後容易快速的擴散出組織外,因而限制其在心肌組織中的存留以保護心肌細胞的功能。

因此,為了有效延長IGF釋放時間以治療心肌梗塞,我們開發出一個新的方法,利用聚乳酸-甘醇酸(PLGA)奈米粒子作為藥物釋放載體以延長IGF在心肌組織中的存留時間。本研究利用“正負電荷粒子吸引原理”製備PLGA-IGF奈米粒子,其粒徑大約74 nm。在體外心肌細胞培養的測試中,PLGA-IGF奈米粒子可以活化phospho-Akt的表現以降低心肌細胞凋亡;在老鼠活體測試中,局部注射PLGA-IGF奈米粒子於心肌梗塞後心臟缺氧患部,在24小時候後,注射部位之IGF含量在注射PLGA-IGF奈米粒子組明顯比只注射IGF或其他對照組更高,我們並且發現注射PLGA-IGF奈米粒子同時具有保護心肌細胞凋亡、減少心肌壞死區域以及改善心臟功能的作用。因此,這個新穎的奈米科技結合蛋白質藥物的治療方式十分具有臨床應用的潛力。
英文摘要 Heart failure is the top one killer of human beings in developed countries. The predominant cause of heart failure is coronary artery disease, which upon occlusion of the artery, lead to myocardial infarction with substantial cardiomyocyte necrosis and apoptosis. Therefore, therapies which prevent cardiomyocyte apoptosis after ischemic injury may prevent the development of heart failure.

The insulin-like Growth Factor (IGF)-1 has been shown to exert cardioprotection effect in vitro and in vivo. However, due to the small size of IGF molecules, direct injection of IGF-1 into infracted myocardium has limited benefits due to a rapid removal by circulation. To improve the retention time and thus cardiac beneficial effects of IGF-1, we have developed IGF-1 conjugated poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-IGF-1 NPs). We used the “electrostatic forces” method to fabricate PLGA-IGF-1NPs for delivering biologically functional IGF-1. The PLGA-IGF-1 NP size was ~74 nm. We showed that addition of PLGA-IGF-1 NPs inhibited Doxorubicin-induced cardiomyocyte apoptosis through the activation of Akt phosphorylation in vitro. In vivo, intramyocardial injection of PLGA-IGF-1 NPs had longer retention of IGF-1 than the injection of IGF-1 alone, and the retention lasted up to 24 hours. Furthermore, injection of PLGA-IGF-1 NPs into the peri-infarct areas prevented cardiomyocyte death, reduced the infarct size, and improved cardiac functions. This technology has potential for translation into a clinical therapy for ischemic heart disease.
論文目次 Chapter1: Introduction.....................................1
1.1 Congestive heart failure...............................1
1.2 Therapeutic strategies for heart failure...............1
1.3 The obstruction of heart regeneration..................1
1.4 Strategies to prevent cardiomyocyte death after infarction...........................................................2
1.5 The role of IGF-1 in the heart tissue............3
1.6 Nanotechnology...........................................4
1.7 Hypothesis...................................................6
1.8 Specific aims................................................6

Chapter 2: Materials and Methods...........................7
2.1 Preparation of PLGA-IGF-1 nanoparticles............7
2.2 Transmission electron microscopy.......................7
2.3 Fourier transforms infrared spectroscopy............7
2.4 X-ray photoelectron spectroscopy.......................7
2.5 Cell culture...........................................................8
2.6 Cardiomyocyte apoptosis assays..........................8
2.7 Western blot ........................................................9
2.8 Experimental myocardial infarction......................9
2.9 Specific human ELISA Kit.....................................10
2.10 Echocardiography..............................................10
2.11 Immunohistochemistry......................................11
2.12 Trichrome stain and measurement of infarct size.11
2.13 Statistical analysis..............................................11

Chapter3: Results......................................................12
3.1 Characterization of PLGA-IGF-1 NPs....................12
3.1-1 Transmission electron microscopy....................12
3.1-2 Fourier transforms infrared spectroscopy..........12
3.1-3 X-ray photoelectron spectroscopy.....................12
3.2 IGF-1 ELISA Kit.......................................................13
3.3 PLGA-IGF-1 NPs promotes cardiomyocyte survival via PI3/Akt signaling......................................................................13
3.4 PLGA-IGF-1 NPs prevents cardiomyocyte apoptosis via PI3/Akt signaling.....................................................................14
3.5 PLGA-IGF-1 NP injection prolongs IGF-1 retention in the infarct area............................................................................14
3.6 PLGA-IGF-1 NP injection induces PI3/Akt activation after MI..........................................................................15
3.7 PLGA-IGF-1 NP injection improves cardiac functions after MI..........................................................................15
3.8 PLGA-IGF-1 NP injection reduces infarct size after MI.16
3.9 Synthesize of PLGA-QD NPs.............................16
3.10 In vivo and ex vivo image with PLGA-QD NP..17

Chapter 4:Discussions............................................35
References.............................................................37
參考文獻 1. Lopez, A.D., Mathers, C.D., Ezzati, M., Jamison, D.T. & Murray, C.J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747-1757 (2006).

2. Babick, A.P. & Dhalla, N.S. Role of subcellular remodeling in cardiac dysfunction due to congestive heart failure. Med Princ Pract 16, 81-89 (2007).

3. Cohn, J.N., Ferrari, R. & Sharpe, N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35, 569-582 (2000).

4. Sabbah, H.N., Sharov, V.G. & Goldstein, S. Cell death, tissue hypoxia and the progression of heart failure. Heart Fail Rev 5, 131-138 (2000).

5. Dhalla, N.S., et al. Subcellular remodeling as a viable target for the treatment of congestive heart failure. J Cardiovasc Pharmacol Ther 11, 31-45 (2006).

6. Hosenpud, J.D., Bennett, L.E., Keck, B.M., Boucek, M.M. & Novick, R.J. The Registry of the International Society for Heart and Lung Transplantation: eighteenth Official Report-2001. J Heart Lung Transplant 20, 805-815 (2001).

7. Poss, K.D., Wilson, L.G. & Keating, M.T. Heart regeneration in zebrafish. Science 298, 2188-2190 (2002).

8. Deb, A., et al. Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247-1249 (2003).

9. Pfeffer, M.A. Left ventricular remodeling after acute myocardial infarction. Annu Rev Med 46, 455-466 (1995).

10. Bergmann, O., et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98-102 (2009).
11. Buja, L.M. & Entman, M.L. Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation 98, 1355-1357 (1998).

12. Zhao, Z.Q. & Vinten-Johansen, J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 55, 438-455 (2002).

13. Levkau, B., et al. Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 117, 1583-1593 (2008).

14. Hsieh, P.C., Davis, M.E., Gannon, J., MacGillivray, C. & Lee, R.T. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116, 237-248 (2006).

15. Kenyon, C.J. The genetics of ageing. Nature 464, 504-512.

16. Yla-Herttuala, S. Gene therapy with vascular endothelial growth factors. Biochem Soc Trans 37, 1198-1200 (2009).

17. Torella, D., et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94, 514-524 (2004).

18. Reiss, K., et al. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci U S A 93, 8630-8635 (1996).

19. Palmen, M., et al. Cardiac remodeling after myocardial infarction is impaired in IGF-1 deficient mice. Cardiovasc Res 50, 516-524 (2001).

20. Reiss, K., Kajstura, J., Capasso, J.M., Marino, T.A. & Anversa, P. Impairment of myocyte contractility following coronary artery narrowing is associated with activation of the myocyte IGF1 autocrine system, enhanced expression of late growth related genes, DNA synthesis, and myocyte nuclear mitotic division in rats. Exp Cell Res 207, 348-360 (1993).

21. Engert, J.C., Berglund, E.B. & Rosenthal, N. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135, 431-440 (1996).

22. Nagai, Y., Unsworth, L.D., Koutsopoulos, S. & Zhang, S. Slow release of molecules in self-assembling peptide nanofiber scaffold. J Control Release 115, 18-25 (2006).

23. Davis, M.E., et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103, 8155-8160 (2006).

24. Sy, J.C., et al. Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater 7, 863-868 (2008).

25. Anderl, J.N., Robey, T.E., Stayton, P.S. & Murry, C.E. Retention and biodistribution of microspheres injected into ischemic myocardium. Journal of Biomedical Materials Research Part A 88A, 704-710 (2009).

26. Park, J.H., et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8, 331-336 (2009).

27. Luker, G.D. & Piwnica-Worms, D. Molecular imaging in vivo with PET and SPECT. Acad Radiol 8, 4-14 (2001).

28. Yezhelyev, M.V., et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7, 657-667 (2006).

29. Roco, M.C. Converging science and technology at the nanoscale: opportunities for education and training. Nat Biotechnol 21, 1247-1249 (2003).

30. Shaffer, C. Nanomedicine transforms drug delivery. Drug Discov Today 10, 1581-1582 (2005).

31. Sengupta, S., et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568-572 (2005).

32. Choi, H.S., et al. Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5, 42-47.


33. MacKay, J.A., et al. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 8, 993-999 (2009).
34. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22, 969-976 (2004).

35. Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54, 631-651 (2002).

36. Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55, 329-347 (2003).

37. Godin, B., et al. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci.

38. Gvili, K., Benny, O., Danino, D. & Machluf, M. Poly(D,L-lactide-co-glycolide acid) nanoparticles for DNA delivery: waiving preparation complexity and increasing efficiency. Biopolymers 85, 379-391 (2007).

39. Zintchenko, A., et al. Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol Ther 17, 1849-1856 (2009).

40. Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21, 2475-2490 (2000).

41. Kim, S.H., Jeong, J.H., Chun, K.W. & Park, T.G. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21, 8852-8857 (2005).

42. Rjeb, M. Contribution to the study by x-ray photoelectron spectroscopy of the natural aging of the polypropylene. The Moroccan Statistical and Condensed Matter Society 5(2004).

43. Scott, R.C., et al. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 23, 3361-3367 (2009).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw