進階搜尋


下載電子全文  
系統識別號 U0026-1907201016232500
論文名稱(中文) 高效率超寬頻脈衝波無線傳能系統
論文名稱(英文) Highly Efficient Ultra-Wideband Impulsive Wireless Power Transmission Systems
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 羅濬智
研究生(英文) Chun-Chih Lo
學號 n2697191
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-楊慶隆
口試委員-羅錦興
口試委員-黃尊禧
口試委員-劉光浩
口試委員-龎一心
中文關鍵字 脈波產生器  發射器  超寬頻系統  整流器  無線充電  能量轉換效率  步階恢復二極體  漣波雜訊  無限功率傳輸 
英文關鍵字 Pulse generator  transmitter  ultra-wideband system  rectifier  wireless powering  PCE  SRD  ringing  wireless power transmission 
學科別分類
中文摘要 本論文將超寬頻技術應用於不同的領域以實現一個使用無線脈衝供電之嶄新技術的超寬頻發射器。本研究應用ADS (Advanced Design System)電路模擬軟體進行電路設計、探討與分析,並以實作完整之無線傳能收發系統進行實測,成功驗證無線脈衝傳能之可行性以及電路之效能,此驗證結果相當適合用於低輸入功率之傳能及生醫應用。
為了實現超寬頻能量之發送,必頇設計一個超寬頻脈波產生器,吾人使用步階恢復二極體(Step Recovery Diode, SRD)搭配離散元件製作出一漣波雜訊(Ringing)極低且對稱性極佳之脈波產生電路,其產生脈衝振幅範圍為310mV到876mV、寬度皆為290ps。為了達到超寬頻脈衝波無線供電的目標,必頇考量所產生之脈衝波是否有足夠的頻寬及振幅是否能夠提供足夠的能量,在此使用一頻寬為6GHz之寬頻功率放大器來提升整體超寬頻無線供電發射器的發射能量,以利無線與生醫植入之應用。
超寬頻脈衝波無線供電發射器包含了超寬頻脈衝產生器、寬頻功率放大器、超寬頻天線以及倍壓整流電路,本研究將其逐一實現並以系統整合驗證。為了有效的傳遞UWB能量,發射端天線使用指向性佳、高增益且有著寬頻特性之Horn antenna。超寬頻脈波產生器所產生的脈波訊號經由寬頻功率放大器放大後提供較大的能量並且經由Horn antenna傳遞能量到接收端之超寬頻天線,其所收到之脈衝微波能量送到經由使用Schottky diode組成之倍壓整流電路轉換成直流電壓與電流,供給電池或晶片使用。
在本篇論文此超寬頻脈衝波無線傳能系統已驗證出在整流器輸入功率低於0dBm之低平均功率下仍然可以達成高效率(>80%)的能量轉換。低平均功率的傳能對人體的影響與傷害較小,是生醫植入裝置或晶片不可或缺的一個關鍵技術,且相較於傳統連續波(Contiuous Wave, CW)之高效率無線供電系統在其整流器最佳轉換效率負載與操作設定下,其微波能量接收端之整流器最佳工作點平均輸入功率可減少至20%以下,其能量轉換效率更可高達80%;在脈衝波產生之能量為最佳效率點(頻率為40MHz、振幅為2Vpp到5Vpp方波觸發之超寬頻脈衝波)時,其脈衝波充電系統能更進一步達成90%以上之極高能量轉換效率。此研究結果將對應用於生醫植入裝置上之無線傳能系統帶來一個重大的發現與影響。
英文摘要 This thesis applies UWB technologies in a special aspect for the transmission of energy rather than messages to achieve a novel wireless impulsive powering approach. An UWB transmitter utilizing wireless impulsive powering is implemented. Advanced Design System (ADS), the integrated circuit simulation software, is applied to design,investigate, and analyze the circuits of the impulsive wireless power transmission systems. The whole wireless power transmitting and receiving systems are implemented to validate the feasibility of the wireless impulsive powering and the conversion efficiency of the rectifier circuitry. Experimental results prove that this technique is quite suitable for low input power transmission and biomedical applications.
The UWB pulse generator is designed and developed to fulfill the UWB power transmission. The UWB pulse generator uses step recovery diodes (SRD) combined with discrete components to produce a low ringing and well symmetry monocycle pulse whose peak-to-peak amplitude ranges from 310 mV to 876 mV and pulse width remains 290 ps. In order to achieve the UWB impulsive wireless powering, the bandwidth and amplitude of the UWB pulse shall be considered for sufficient transmission power. For biomedical implant chips and devices, the broadband 6-GHz power amplifier (2GHz-8GHz) is attached to increase the deliverable power of the wireless UWB power supplier.
The UWB impulsive wireless transmission systems include an UWB pulse generator, a broadband power amplifier, an UWB antenna, and a voltage-doubler rectifier. Each module is implemented and the whole system is integrated and valiated. In order to deliver the UWB power efficiently, a horn antenna with high directivity, large gain, and broad bandwidth acts as the transmit antenna. The power of impulsive signals generated by the UWB pulse generator is amplified by the broadband power amplifier and then delivered through the horn antenna. And the received impulsive power is converted by the voltage-doubler rectifier composed of Schottky diodes into a direct current (DC) power to supply the chips or batteries.
In this thesis, the UWB impulsive wireless transmission systems have been proved to achieve high power conversion efficiency (PCE), larger than 80% even when the input power of the rectifier is lower than 0 dBm. Due to the fact that low transmission power has relatively little impacts and causes relatively slight injury to human bodies, it is one of the essential key technologies in biomedical implant chips and devices. Compared to the traditionally continuous wave (CW) powering systems recfiliers oprated at the optimal transmission efficiency condition setup and the specific value load resistor, the overall transmission power to recfilier has been reduced by at least 80%, and the transmission efficiency can still achieve up to 80%. At the operation condition of the optimal power efficiency (the pulse generator is trigger by the 40MHz 2Vpp to 5Vpp square waves, the conversion efficiency of our proposed impulsive system attains to more than 90%, which is the outstanding. These research results will contribute to and make significant impacts on wireless remote powering systems for biomedical implant devices in the future.
論文目次 第一章 緒論1
1.1 超寬頻的研究背景與動機1
1.2 超寬頻的定義與系統架構2
1.3 超寬頻的技術特性與調變機制4
1.4 超寬頻的特殊應用8
1.5 無線功率傳輸簡介9
1.6 能量轉換效率11
1.7 論文架構12
第二章 超寬頻脈波產生器介紹13
2.1 超寬頻脈波產生電路簡介13
2.2 積體電路設計之超寬頻脈波產生器13
2.2.1 應用於超寬頻系統的全數位低功率互補式場效電晶體脈波產生器13
2.2.2 應用於6-10GHz的場效電晶體超寬頻脈波產生器16
2.3 離散元件設計之超寬頻脈波產生器17
2.3.1 使用步階恢復二極體的共平面微微秒脈波產生器17
2.3.2 使用金屬場效電晶體減少失真並改善重複率之低價超寬頻脈波發射器19
2.3.3 極低漣波的超寬頻超短區間單週期脈波產生器21
2.3.4 使用二階暫態電路的超寬頻單週期脈波產生22
2.4 結果與討論24
第三章 超寬頻單週期脈波產生器研製與量測結果25
3.1 超寬頻脈波波形及設計簡介25
3.2步階恢復二極體之模擬參數28
3.3 使用步階恢復二極體設計之極低漣波超寬頻單週期脈波產生器29
3.3.1步階恢復二極體脈波產生原理29
3.3.2 脈波產生器電路架構以及其電路設計架構分析32
3.3.3 模擬結果圖35
3.3.4 實際量測結果37
3.3.5 方波振盪器振幅變化對單週期脈波產生器之影響39
3.3.6 超寬頻單週期脈波結果比較41
3.4 結果與討論42
第四章 高效率超寬頻脈衝波無線供電系統整合及實驗結果43
4.1傳統連續波與新型脈衝波充電技術43
4.2 高效率超寬頻脈衝波無線供電系統完整架構介紹48
4.3 超寬頻天線48
4.4 倍壓整流電路53
4.5 高效率超寬頻脈衝波無線供電系統實驗設置以及實驗結果討論56
4.5.1 超寬頻脈衝波產生電路充電結果56
4.5.2 比對脈衝波與連續波之輸出能量消耗59
4.5.3 脈衝波充電系統之最佳操作點選擇及其效率64
4.5.4 脈衝波充電系統之實際充電時間測量67
4.5.5脈衝波充電系統之無線充電量測結果69
4.6 結果與討論74
第五章 結論以及未來發展76
5.1 結論76
5.1.1 超寬頻脈波產生器76
5.1.2 超寬頻脈衝波無線傳能系統整合76
5.1.3 高效率超寬頻脈衝波傳能系統77
5.2 超寬頻脈衝波無線傳能系統之未來發展78
5.2.1 理論優化78
5.2.2 倍壓整流電路78
5.2.3 超寬頻天線78
5.2.4 脈波產生電路79
5.2.5 穩壓器80
5.2.6 寬頻混波器(Mixer) 80
5.2.7 系統積體化之考量80
5.2.8 整體系統之優化80
參考文獻81
附錄A 高效率脈衝波無線傳能系統波形量測結果84
附錄B 寬頻功率放大器設計介紹86
B.1應用於超寬頻無線供電系統之寬頻功率放大器重要規格介紹86
B.1.1 寬頻功率放大器簡介86
B.1.2 增益及其平坦度86
B.1.3 頻率範圍86
B.1.4 輸出功率以及1dB增益壓縮點86
B.1.5 溫度範圍88
B.2 寬頻功率放大器設計方法88
B.2.1 偏壓點的選擇88
B.2.2 選擇最佳功率與輸出阻抗89
B.2.3 匹配網路設計90
B.3 寬頻功率放大器設計流程及電路架構91
B.3.1 設計流程91
B.3.2 電路架構93
B.2 模擬與量測結果比較94
B.3 結果與討論96
參考文獻 [1] http://www.mastergasservice.com/wp711me/?p=174
[2] 江坤山,“寬頻無線傳輸,發射!”2005年 12月科學人雜誌
[3] http://www.intel.com.tw/
[4] http://www.ieee802.org/15/
[5] http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf
[6] 邱佳松,黃國威,陳坤明,“超寬頻無線通訊技術概論,”2003年11月20期電子與材料雜誌
[7] http://www.edntaiwan.com/article-8025
[8] 尤宗旗, 國立成功大學電機所博士論文“應用具諧波抑制與圓極化平面整流天線之無線傳充電系統設計”,97年6月
[9] T. C. Yo, C. M. Lee, C. H. Luo. C. -H. Tu, Y. –Z. Juang. ,”Stacked Implantable Rectenna for Wireless Powering the Medical Implants. ” IEEE AP-S International Symposium., pp.3189-3192, Jun 2007.
[10] http://blog.mapawatt.com/2009/09/02/wireless-electricity/
[11] Kim, H, Park, D., Joo, Y.,”All-digital Low-power CMOS Pulse Generator for UWB system,” Electronics Letters Volume 40, Issue 24, 25 Nov. 2004 Page(s):1534-1535.
[12] Sanghoon Sim, Dong-Wook Kim, Member, IEEE, and Songcheol Hong, “A CMOS UWB Pulse Generator for 6–10 GHz Applications ,” IEEE Microwave Wireless Compon. Lett. Vol. 19, no. 2, pp. 83-85, Feb 2009.
[13] T. Teshirogi, S. Saito, M. Uchino, M. Ejima, K. Hamaguchi, H. Ogawa,and R. Kohno, “Residual-carrier-free Burst Oscillator for Automotive UWB Radar Applications,” Electron. Lett., vol. 41, no. 9, pp. 535–536, Apr. 2005.
[14] J. S Lee and C. Nguyen, “Uniplanar Picosecond Pulse Generator using Step Recovery Diode,” Electronics Letters, vol. 37, no. 8, pp. 504-506, 12 Apr 2001.
[15] J. S Lee and C. Nguyen, “Novel Low-cost Ultra-wideband, Ultra-short-pulse Transmitter with MESFET Impulse-shaping Circuitry for Reduced Distortion and Improved Pulse Repetition rate,” IEEE Microwave Wireless Compon. Lett. Vol. 11, pp. 208-210, May 2001.
[16] J. Han and C. Nguyen, “A new Ultra-Wideband, Ultra-short Monocycle Pulse Generator With Reduced Ringing,” IEEE Microwave Wireless Compon. Lett, vol.12, no.6, pp. 206-208, June 2002.
[17] Wun-Bi Lin, Ying-Te Liu and Fu-Chiarng Chen, “A New Ultra-Wideband Monocycle Pulse Generator Using Second-Order Transient Circuit,” IEEE Microwave Conference, pp. 428 – 431, Oct 2008.
[18] Sheng, H, Orlik, P., Haimovich, A. M., Cimini, L. J., and Zhang, J.:”On the Spectral and Power Requirements for Ultra-widebandTtransmission,” IEEE Int. Conf. on- 83 -Communications, Anchorage, AL USA, Vol. 1, pp.738-742, March 2003.
[19] Stoica, L., Tiuraniemi, S., Rabbachin, A., and Oppermann, I., “An Ultra-wideband TAG Circuit Transceiver Architecture,” IEEE Conf. on Ultra Wideband Sys. And Tech., Kyoto,Japan, pp. 258-262, May 2004.
[20] Z. N. Chen. X. H. Wu, N. Yang and M. Y. W. Chia, “Considerations for Source Pulses and Antennas in UWB Radio Systems,” IEEE Trans. Antennas Propag, vol. 52, pp. 1739-1748, July 2004.
[21] Millman, J., and Hamilton, S. A, “Physical Modeling of the Step Recovery Diode for Pulse and Harmonic Generation Circuits,” Proc. IEEE, 1969, 57, pp. 1250-1259
[22] J. Han and C. Nguyen, “Coupled-slotline-hybrid Sampling Mixer Integrated with Step-recovery-diode Pulse Generator for UWB Applications,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1875-1882, June 2005.
[23] http://www.aeroflex.com/AMS/Metelics/pdfiles/mmd_sp.pdf
[24] H. Kida, “Measured and Simulated Results of Impulse Generator using Step Recovery Diode,” IEICE Trans. Fundamentals, vol E88-A, No.9, pp. 2381-2383, Sept. 2005.
[25] S. Hamilton and R. Hall, “Shunt-mode harmonic Generation using Step Recovery Diodes,” Microwave J., pp. 69–78, Apr. 1967.
[26] Nattapon Chaimanonart, Wen H. Ko, and Darrin J. Young, “Remote RF Powering System for MEMS Strain Sensors,” IEEE ICSENS, vol 3,pp. 1522-1525, May 2005.
[27] Nattapon Chaimanonart, Keith R. Olszens, Mark D. Zimmerman, Wen H. Ko, and Darrin J. Young, “Implantable RF Power Converter for Small Animal In Vivo Biological Monitoring, ” IEEE IEMBS,pp. 5194-5197, 2005.
[28] Mark D. Zimmerman, Nattapon Chaimanonart, and Darrin J. Young, “In Vivo RF Powering for Advanced Biological Research,” IEEE IEMBS,pp. 2506-2509, 2006.
[29] 李建銘,國立成功大學電機所博士論文“植入式生醫遙測天線實現與寬頻天線設計”,98年1月
[30] ICNIRP, "Guidelines for Limiting Exposure to Time-varying Electric,Magnetic, and Eelectromagnetic Fields (up to 300 GHz)," Health Phys., vol.4, pp. 494-522, 1998.
[31] C. L. Ogden, C. D. Fryar, M. D. Carroll, and K. M. Flegal, "Mean Body Weight, Height, and Body Mass Index, United States 1960–2002,"Centers for Disease Control and Prevention, vol. 347, 2004.
[32] J.-P. Curty, N. Joehl, F. Krummenacher, and C. Dehollain, " A Model for μ-powered Rectifier Analysis and Design," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 52, 2005.
[33] http://www.minicircuits.com/pdfs/ZRON-8G+.pdf
[34] Soubhi Abou Chahine, Maria Addam, Hadi Abdel Rahim, Areej Itani, Hiba Jomaa , “A Modified Circular Disc Monopole Ultra Wide Band Antenna,” IEEE Advances in Computational Tools for Engineering Application, ACTEA '09 ,pp.71 – 75,July 2009.
[35] J.Liang, C,Chiau, X.Chen, and C.G. Parini, “Analysis and Design of UWB Disc Monopole Antennas”, IEEE seminar on Ultra Wideband Communications Technologies an System Design, 2004.
[36] HSMS-286x Series, Surface Mount Microwave Schottky Detector Diodes, Data Sheet, Avago technology
[37] S. C. Cripps, “RF Power Amplifier for Wireless Communication”, Artech House
[38] G. D. Vendelin, A. M. Pavio, U. L. Rohde, “Microwave Circuit Design Using linear and nonlinear Techniques,” Wiley-Interscience, 1990.
[39] http://www.mimixbroadband.com/Data/Document-Library/CFS0303-SB-mx.pdf
[40] http://www.minicircuits.com/pdfs/ADCH-80A.pdf
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw