進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1906202021575100
論文名稱(中文) 不同晶體於二維材料表面之凡得瓦磊晶及其在元件上之應用
論文名稱(英文) Van der Waals Epitaxy of Different Crystals on 2D Material Surfaces for Device Applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 吳柏諭
研究生(英文) Bo-Yu Wu
電子信箱 bill19950609@gmail.com
學號 L76071061
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 指導教授-林時彥
口試委員-張守進
口試委員-李欣縈
口試委員-林建中
中文關鍵字 鍺烯  元素態二維材料  二維材料異質結構  單晶金薄膜 
英文關鍵字 Germanene  Elemental 2D materials  Hetero structures  Single crystal Gold film 
學科別分類
中文摘要 本論文中我們以預鍍過渡金屬硫化法製備大面積且均勻之二硫化鉬薄膜,並透過熱蒸鍍沉積系統成功於二硫化鉬表面成長出二維層狀結構鍺烯薄膜。藉由改變基板成長溫度,於400 ℃ 成長溫度得到表面較大粒徑且連續導電的鍺烯薄膜,利用原子力顯微鏡、四點探針、X射線繞射與穿透式電子顯微鏡等分析工具,觀察到鍺烯薄膜完整以二維的結構堆疊成長於二硫化鉬表面。接著以此製程條件製備上閘極場效電晶體元件,鍺烯理論計算有著類似於石墨烯狄拉克錐的能帶結構,因此預期電性表現上,與石墨烯場效電晶體同樣為p型通道與n型通道之雙極性傳輸曲線。本論文我們演示了類似的傳輸特性,並進一步改善元件製程,使用銻烯作為汲極與源極之接觸電極降低阻抗以及鍺烯之通道保護層來減少氧化因素,提升了元件電性表現。驗證了二維材料異質結構的堆疊以及凡得瓦磊晶成長機制;遵循相似概念,我們也成功於二硫化鉬表面成長大面積單晶金薄膜,並透過改變溫度與鍍率控制薄膜連續性與表面平坦度,於 100 ℃ 條件下獲得接近理論值的薄層電阻為2.9 Ω / □ 的單晶薄金 (10 nm),由於半導體元件尺寸的縮小,元件中特性受導線 影響日漸變大,因此本論文於二維材料表面成長單晶薄金薄膜,期待未來利用同樣概念成長單晶薄銅,導入半導體元件製程。本論文透過凡得瓦磊晶成長機制,成功合成了2D-2D、2D-3D結構的堆疊,驗證了在此生長機制下材料晶格常數不匹配不是成長時考慮的重點,因此可完成不同晶體於二維材料表面之凡得瓦磊晶。
英文摘要 In this thesis, we have demonstrated that the other group-IV elemental 2D material germanene can be grown on MoS2 surfaces by using the thermal evaporation. The formation of germanene on MoS2 surfaces have demonstrated the preferential formation of 2D structures on the other 2D material surfaces. The well stacks of the different 2D materials have also demonstrated the less dependence on the substrate lattice constant of van der Waals epitaxy. Top-gate transistors with germanene channels are also demonstrated in this report. The theoretical calculation of germane has an energy band structure similar to that of the graphene Dirac cone. Therefore, the expected electrical performance is the same as the graphene field effect transistor. Following the similar concept, we have also successfully grown a large-area and single-crystal gold film on the surface of molybdenum disulfide. By changing the temperature and deposition rate to control the continuity and surface flatness of the film, a single crystal 10 nm gold with a sheet resistance close to the theoretical value of 2.9 Ω / □ was obtained at 100 ℃. As the size of semiconductor devices shrinks, the characteristics of devices are increasingly affected by interconnects. Therefore, the thin conductive gold film with improved crystalline quality can vary advantageous for the interconnect application in the next–generation electronics. In this thesis, we have demonstrated the successful synthesis of the well stacks 2D-2D and 2D-3D structures through the van der Waals epitaxial growth mechanism. It was verified that under this mechanism, the mismatch of lattice constants of the epi-layers to the substrates is not the major issue during the growth procedure.
論文目次 摘要 i
Abstract ii
誌謝 v
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1-1 研究動機與論文架構 1
1-2 二硫化鉬晶體結構與基本性質 3
1-2-1 二硫化鉬晶體結構與特性 3
1-2-2 二硫化鉬拉曼光譜分析 4
1-2-3 二硫化鉬之製備方式 4
1-3 鍺烯之基本性質 6
1-3-1 鍺烯之晶體結構與特性 6
1-3-2 鍺烯之拉曼光譜分析 7
1-4 銻烯之基本性質 7
1-4-1 銻烯之晶體結構與特性 7
1-4-2 銻烯之拉曼光譜分析 7
1-5 金之晶體結構與基本性質 8
1-5-1 金之晶體結構 8
1-5-2 金之X射線繞射分析 9
第二章 實驗儀器與原理 17
2-1 材料成長系統 17
2-1-1 射頻濺鍍系統 17
2-1-2 低真空硫化系統 19
2-1-3 熱蒸鍍沉積系統 20
2-1-4 電子束蒸鍍沉積系統 20
2-2 材料分析儀器 21
2-2-1 高解析共軛焦拉曼光譜儀 21
2-2-2 原子力顯微鏡 22
2-2-3 X射線繞射分析儀 23
2-2-4 穿透式電子顯微鏡 24
2-2-5 X射線光電子能譜分析儀 26
2-2-6薄膜電阻四點探針量測 26
2-3 半導體元件製程設備與分析儀器 27
2-3-1 電子槍蒸鍍系統 27
2-3-2 反應式離子蝕刻系統 28
2-3-3 原子層沉積系統 28
2-3-4 元件三端點量測系統 29
第三章 鍺烯薄膜成長及其元件應用 39
3-1 二硫化鉬基板之薄膜製備 39
3-1-1 基板準備與鉬金屬沉積 39
3-1-2 過渡金屬鉬金屬硫化 40
3-1-3 雙層二硫化鉬基板成長及分析 40
3-2 高溫退火對鍺薄膜之晶體影響與分析 41
3-2-1 拉曼光譜分析不同溫度退火之鍺薄膜 41
3-2-2 鍺薄膜於不同溫度退火之晶體結構分析與比較 42
3-3 熱蒸鍍沉積系統成長鍺烯薄膜 43
3-3-1 鍺烯成長流程 43
3-3-2 以拉曼光譜分析不同溫度成長之鍺烯薄膜 44
3-3-3 原子力顯微鏡與薄膜電阻分析不同溫度成長之鍺烯薄膜表面 44
3-3-4 不同基板溫度成長鍺烯薄膜之晶體結構分析與比較 45
3-4 鍺烯場效電晶體元件製程及電性分析 46
3-4-1 鍺烯之上閘極式場效電晶體製程 46
3-4-2 鍺烯場效電晶體元件電性量測及分析 49
3-4-3 銻烯作為接觸電極與通道保護層之鍺烯場效電晶體製備與分析 50
3-4-4 銻烯作為接觸電極與通道保護層之鍺烯場效電晶體電性量測分析 53
3-5 結論 54
第四章 單晶金薄膜成長及其導電特性 68
4-1 二硫化鉬薄膜與單晶金薄膜製備 68
4-1-1 三層二硫化鉬薄膜製備 68
4-1-2 單晶金薄膜製備 69
4-2 熱蒸鍍沉積系統成長單晶金薄膜之分析與比較 70
4-2-1 不同基板溫度成長單晶金薄膜成長表面分析與比較 70
4-2-2 不同基板溫成長單晶金薄膜晶體結晶特性之分析與比較 71
4-2-3 不同基板溫成長單晶金薄膜顯微晶體結構之分析與比較 72
4-3 電子束蒸鍍系統成長單晶金薄膜之分析與比較 72
4-3-1 不同基板溫度成長之單晶金薄膜成長之表面分析 73
4-3-2 不同基板溫度成長之單晶金薄膜晶體結晶特性之分析 73
4-4 單晶薄金之薄膜成長及電性分析 74
4-4-1 薄膜電阻電性量測方法 74
4-4-2 單晶薄金薄膜成長之表面形貌與薄膜電阻分析與比較 75
4-4-3 單晶薄金薄膜晶體結晶特性之分析與比較 76
4-4-4 單晶薄金薄膜顯微晶體結構之分析與比較 76
4-4-5 相同製程於不同基板成長之薄膜電阻分析與比較 77
4-5 結論 78
第五章 總結 88
參考文獻 91

參考文獻 [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. “Electric field effect in atomically thin carbon films”, Science, 306 (5696), 666-669. (2004).
[2] Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. “Synthesis of graphene and its applications: a review”, Critical Reviews in Solid State and Materials Sciences, 35 (1), 52-71. (2010).
[3] Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H. “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, nature, 457 (7230), 706. (2009).
[4] Schwierz, F. “Graphene transistors”, Nature nanotechnology, 5 (7), 487, (2010).
[5] Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. “Atomically thin MoS2: a new direct-gap semiconductor”, Physical review letters, 105 (13), 136805. (2010).
[6] Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., & Zhang, H. “Optical identification of single‐and few‐layer MoS2 sheets”, Small, 8 (5), 682-686. (2012).
[7] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis “Single-layer MoS2 Transistors”, Nature Nanotechnology. 6, 147–150. (2011).
[8] Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., ... & Zhang, Y. “Black phosphorus field-effect transistors ” Nature nanotechnology 9.5, 372. (2014).
[9] Chen, H. A., Sun, H., Wu, C. R., Wang, Y. X., Lee, P. H., Pao, C. W., & Lin, S. Y. “Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure”, ACS applied materials & interfaces, 10 (17), 15058-15064. (2018).
[10] Tsai, H. S., Chen, Y. Z., Medina, H., Su, T. Y., Chou, T. S., Chen, Y. H., ... & Liang, J. H. “Direct formation of large-scale multi-layered germanene on Si substrate”, Physical Chemistry Chemical Physics 17.33, 21389-21393. (2015).
[11] Deng, J., Xia, B., Ma, X., Chen, H., Shan, H., Zhai, X., ... & Zhang, S. C. “Epitaxial growth of ultraflat stanene with topological band inversion”, Nature materials 17.12, 1081-1086. (2018).
[12] Lin, M. Y., Chang, C. E., Wang, C. H., Su, C. F., Chen, C., Lee, S. C., & Lin, S. Y. “Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS2/graphene hetero-structures by chemical vapor depositions”, Applied Physics Letters 105.7, 073501. (2014).
[13] Chen, H. A., Chen, W. C., Sun, H., Lin, C. C., & Lin, S. Y. “Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications”, Semiconductor Science and Technology 33.2, 025007. (2018).
[14] Koma, A., Sunouchi, K., & Miyajima, T. “Fabrication and characterization of heterostructures with subnanometer thickness”, Microelectronic Engineering 2.1-3, 129-136. (1984).
[15] Zeng, H., & Cui, X. “An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides”, Chemical Society Reviews 44.9, 2629-2642. (2015).
[16] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., ... & Wang, F. “Emerging photoluminescence in monolayer MoS2”, Nano letters 10.4, 1271-1275. (2010).
[17] Dhakal, K. P., Duong, D. L., Lee, J., Nam, H., Kim, M., Kan, M., ... & Kim, J. “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2”, Nanoscale 6.21, 13028-13035. (2014):
[18] Kuc, Agnieszka, Nourdine Zibouche, and Thomas Heine. “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2”, Physical Review B 83.24, 245213. (2011).
[19] Johari, P., & Shenoy, V. B. “Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains”, ACS nano 6.6, 5449-5456. (2012).
[20] Wieting, T. J., & Verble, J. L. “Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal MoS2”, Physical Review B 3.12, 4286. (1971).
[21] Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., & Baillargeat, D. “From bulk to monolayer MoS2: evolution of Raman scattering”, Advanced Functional Materials 22.7, 1385-1390. (2012).
[22] Ye, M., Winslow, D., Zhang, D., Pandey, R., & Yap, Y. K. “Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films”, Photonics Vol. 2. No. 1. Multidisciplinary Digital Publishing Institute, 288-307. (2015).
[23] Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., & Ryu, S. “Anomalous lattice vibrations of single-and few-layer MoS2”, ACS nano 4.5, 2695-2700. (2010).
[24] Li, H., Wu, J., Yin, Z., & Zhang, H. “Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets”, Accounts of chemical research 47.4, 1067-1075. (2014).
[25] Shi, Y., Li, H., Wong, J. I., Zhang, X., Wang, Y., Song, H., & Yang, H. Y. “MoS2 Surface Structure Tailoring via Carbonaceous Promoter”, Scientific reports 5, 10378. (2015).
[26] Wu, D., Min, T., Zhou, J., Li, C., Ma, G., Lu, G., ... & Gu, Z. “Effect of Substrate symmetry on the dendrite morphology of MoS2 Film synthesized by CVD”, Scientific reports 7.1, 1-9. (2017).
[27] Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., & Aufray, B. “Epitaxial growth of a silicene sheet”, Applied Physics Letters 97.22, 223109. (2010).
[28] Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., & Ciraci, S. “Two-and one-dimensional honeycomb structures of silicon and germanium”, Physical review letters 102.23, 236804. (2009).
[29] Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A., & Le Lay, G. “Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene”, New Journal of Physics 16.9, 095002. (2014).
[30] Guzmán-Verri, G. G., & Voon, L. L. Y. “Electronic structure of silicon-based nanostructures”, Physical Review B 76.7, 075131. (2007).
[31] Lin, C. H., Huang, A., Pai, W. W., Chen, W. C., Chen, T. Y., Chang, T. R., ... & Chiang, T. C. “Single-layer dual germanene phases on Ag (111)”, Physical Review Materials 2.2, 024003. (2018).
[32] Li, L., Lu, S. Z., Pan, J., Qin, Z., Wang, Y. Q., Wang, Y., ... & Gao, H. J. “Buckled germanene formation on Pt (111)”, Advanced Materials 26.28, 4820-4824. (2014).
[33] Derivaz, M., Dentel, D., Stephan, R., Hanf, M. C., Mehdaoui, A., Sonnet, P., & Pirri, C. “Continuous germanene layer on Al (111)”, Nano letters 15.4, 2510-2516. (2015).
[34] Qin, Z., Pan, J., Lu, S., Shao, Y., Wang, Y., Du, S., ... & Cao, G. “Direct evidence of Dirac signature in bilayer germanene islands on Cu (111)”, Advanced Materials 29.13, 1606046. (2017).
[35] Gou, J., Zhong, Q., Sheng, S., Li, W., Cheng, P., Li, H., ... & Wu, K. “Strained monolayer germanene with 1×1 lattice on Sb (111)”, 2D Materials 3.4, 045005. (2016).
[36] Trivedi, S., Srivastava, A., & Kurchania, R. “Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation”, Journal of Computational and Theoretical Nanoscience 11.3, 781-788. (2014).
[37] Dávila, M. E., & Le Lay, G. “Few layer epitaxial germanene: a novel two-dimensional Dirac material”, Scientific reports 6, 20714. (2016).
[38] Liu, C. C., Jiang, H., & Yao, Y. “Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin”, Physical Review B 84.19, 195430. (2011).
[39] Matthes, L., Pulci, O., & Bechstedt, F. “Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene”, Journal of Physics: Condensed Matter 25.39, 395305. (2013).
[40] Ye, X. S., Shao, Z. G., Zhao, H., Yang, L., & Wang, C. L. “Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations”, RSC Advances 4.41, 21216-21220. (2014).
[41] Liu, C. C., Feng, W., & Yao, Y. “Quantum spin Hall effect in silicene and two-dimensional germanium”, Physical review letters 107.7, 076802. (2011).
[42] Scalise, E. “Vibrational properties of silicene and germanene”, Springer, Cham, Vibrational Properties of Defective Oxides and 2D Nanolattices, 61-93. (2014).
[43] Wiberg. Egon Wiberg, A. F. Holleman, Nils Wiberg. “Inorganic chemistry”, Academic press, Berlin , New York, 759. (2001).
[44] Zhang, S., Yan, Z., Li, Y., Chen, Z., & Zeng, H. “Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions”, Angewandte Chemie International Edition 54.10, 3112-3115. (2015).
[45] Ji, J., Song, X., Liu, J., Yan, Z., Huo, C., Zhang, S., ... & Hao, Y. “Two-dimensional antimonene single crystals grown by van der Waals epitaxy”, Nature communications 7.1, 1-9. (2016).
[46] Lokesh, N. “Crystal Analysis: Miller Indices of a Crystal Materials Engineering”, Engineeringenotes.
[47] Gao, Y. J., Deng, Q. Q., Huang, L. L., Ye, L., Wen, Z. C., & Luo, Z. R. “Atomistic modeling for mechanism of crack cleavage extension on nano-scale”, Computational Materials Science 130, 64-75. (2017).

[48] Moura, C. C., Tare, R. S., Oreffo, R. O., & Mahajan, S. “Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration”, Journal of The Royal Society Interface 13.118, (2016).
[49] Kim, H., & Maeng, W. J. “Applications of atomic layer deposition to nanofabrication and emerging nanodevices”, Thin Solid Films 517.8, 2563-2580. (2009).
[50] Matsui, M., Murakami, H., Fujioka, T., Ohta, A., Higashi, S., & Miyazaki, S. “Characterization of chemical bonding features at metal/GeO2 Interfaces by X-ray photoelectron spectroscopy”, Microelectronic engineering 88.7, 1549-1552. (2011).
[51] Lin, M. Y., Wang, C. H., Chang, S. W., Lee, S. C., & Lin, S. Y. “Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition”, Journal of Physics , Applied Physics 48.29, 295106. (2015).
[52] Zhang, Y. W., Li, J. Y., Wu, C. H., Chang, C. Y., Chang, S. W., Shih, M. H., & Lin, S. Y. “Tungsten Diselenide Top-gate Transistors with Multilayer Antimonene Electrodes: Gate Stacks and Epitaxially Grown 2D Material Heterostructures” Scientific Reports 10.1, 1-7. (2020).
[53] Chen, K. C., Lai, S. M., Wu, B. Y., Chen, C., & Lin, S. Y. “Van der Waals Epitaxy of Large-Area and Single-Crystalline Gold Films on MoS2 for Low-Contact-Resistance 2D–3D Interfaces”, ACS Applied Nano Materials 3.3, 2997-3003. (2020).
[54] Mahenderkar, N. K., Chen, Q., Liu, Y. C., Duchild, A. R., Hofheins, S., Chason, E., & Switzer, J. A. “Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics”, Science 355.6330, 1203-1206. (2017).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-06-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-06-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw