進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1906201906415900
論文名稱(中文) 煉鋼廠之蓄熱爐熱應力基礎研究
論文名稱(英文) The Fundamental Thermal Stress Analysis of a Checker Chamber Used in Steel Making Process
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳韋綱
研究生(英文) Wei-Kang Chen
學號 N16061561
學位類別 碩士
語文別 中文
論文頁數 173頁
口試委員 指導教授-張錦裕
口試委員-陳志臣
口試委員-魏蓬生
口試委員-屈子正
中文關鍵字 有限元素分析  熱應力  煉鋼廠蓄熱爐  熱傳導 
英文關鍵字 Finite element analysis  Thermal stress  Checker chamber  Heat conduction 
學科別分類
中文摘要 在鋼鐵製程中,負責供給高爐高溫熱風的熱風爐扮演著關鍵的角色,是影響煉鐵產量的關鍵設備之一。隨著工業上的發展與進步,如何保證熱風爐穩定、長壽的正常運作一直是設計者注目的焦點。因此本文主要從基礎研究上著手,使用商用套裝軟體ANSYS進行熱固耦合模擬分析磚與蓄熱爐變形和應力分佈情形,以便了解熱風爐操作過程中,因溫度差及壓力差而產生的應力變化之行為模式,進而作為優化熱風爐運作的設計參考。
本研究主要分為三個部份,第一部份為建立一維之單層材料圓柱與球殼的穩態模型,以有限元素法詳細的探討在溫差250°C、500°C、750°C及1000°C下的溫度場、應力場和變形量,並與現有的文獻之解析解作比對。結果表示,在環向與軸向應力上兩模型內壁面呈現壓應力,外壁面呈現拉應力,其會隨著溫差上升而加劇。並比較有無考慮內壓之差異與效應。第二部分為建立雙層材料之一維穩態模型,探討雙層材料性質的差異(如楊氏係數、熱傳導係數與熱膨脹係數)對溫度場、應力場與位移量的影響。第三部分為建立簡化之蓄熱爐三維穩態模型,其包含下方之熱風支管與上方與燃燒爐相連之連接管,並將其結果與前述之解析解進行比較。結果顯示,外壁面最大的拉應力發生在上方連接管與爐頂的連接處,其拉應力大小平均約為3.6倍爐頂的外壁面拉應力;整個熱風爐下方靠近底座與熱風支管區域受到較大的壓應力,其最大壓應力約為2.7倍爐身內壁面壓應力。
英文摘要 In this study starts from basic research, using the commercial software ANSYS to build thermal-structure coupling model and simulate the deformation and stress distribution of bricks and checker chamber in order to understand the stress changes caused by temperature difference and pressure difference during the operation of hot blast stove. Utilize the results as a reference for optimization.
This study is divided into three parts. The first part is to establish a one dimensional steady state model of single layer material cylinder and spherical shell. The finite element method is used to analyze the temperature field, stress distribution and deformation under the temperature difference 250°C, 500°C, 750°C and 1000°C. The results are compared with the analytical solution of the existing literature and it shows that the inner wall of the two models display compressive stress on the circumferential and axial stresses and the outer wall display tensile stress, which will be more intense as the temperature difference increases. In addition, the effects of internal pressure is considered. The second part is to establish a one dimensional steady state model of two layers materials and analyze the effects of the different properties of the two-layer materials (such as Young's modulus, thermal conductivity and thermal expansion coefficient) on temperature field, stress distribution and deformation. The third part is to establish a simplified three dimensional steady state model of the checker chamber which include hot blast manifold and connecting pipe. The results show that the maximum tensile stress on the outer wall occurs along the intersection line of the connecting pipe and the dome. The tensile stress is about 3.6 times the outer wall tensile stress of the top of the furnace. The maximum compressive stress occurs at the inner wall of the hot blast manifold and is about 2.7 times the inner wall compressive stress of the furnace body.
論文目次 摘要 I
Abstract II
致謝 XIII
目錄 XIV
表目錄 XVII
圖目錄 XVIII
符號說明 XXIV
第一章、緒論 1
1.1、前言 1
1.2、文獻回顧與探討 2
1.3、研究目的 8
第二章、理論分析 10
2.1、單層熱應力分析 10
2.1.1、基本假設 10
2.1.2、單層中空圓柱 10
2.1.3、單層中空球 19
2.2、雙層熱應力分析 29
2.2.1、物理模型 29
2.2.2、基本假設 29
2.2.3、參數與等效計算分析 30
2.2.4、邊界條件 33
2.3、蓄熱爐熱應力分析 38
2.3.1、物理模型 38
2.3.2、基本假設 38
2.3.3、統御方程式 39
2.3.4、邊界條件 41
第三章、 數值分析 48
3.1、數值方法 48
3.2、耦合場分析概論 48
3.2.1、耦合場分析之定義 48
3.2.2、耦合場之類型 48
3.3、解題流程 49
3.4、格點測試 49
3.4.1、單層與雙層熱應力格點測試 50
3.4.2、蓄熱爐熱應力格點測試 50
第四章、結果與討論 55
4.1、單層熱應力分析 55
4.1.1、溫度場分析 55
4.1.2、理論比較分析 55
4.1.3、應力場分析 56
4.1.4、位移量分析 57
4.2、雙層熱應力分析 95
4.2.1、溫度場分析 95
4.2.2、應力場分析 95
4.2.3、位移量分析 97
4.3、蓄熱爐熱應力分析 138
4.3.1、溫度與應力場分析 138
4.3.2、位移量分析 139
第五章、結論 167
5.1、單層熱應力分析 167
5.2、雙層熱應力分析 168
5.3、蓄熱爐熱應力分析 168
參考文獻 170

參考文獻 [1] Ootao, Y., Tanigawa, Y. and Fukuda, T., “Axisymmetric transient thermal stress analysis of a multilayered composite hollow cylinder”, Journal of Thermal Stresses, Vol.14, No.2, pp.201-213, 1991

[2] Yoshihiro, O. and Naotake, N., “Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material”, Journal of Thermal Stresses, Vol.17, No.3, pp.471-487, 1994

[3] Kandil, A., El-Kady, A. A. and El-Kafrawy, A., “Transient thermal stress analysis of thick-walled cylinders”, International Journal of Mechanical Sciences, Vol.37, No.7, pp.721-732, 1995

[4] Lutz, M. P. and Zimmerman, R. W., “Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere”, Journal of Thermal Stresses, Vol.19, No.1, pp.39-54, 1996

[5] Zimmerman, R. W. and Lutz, M. P., “Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder”, Journal of Thermal Stresses, Vol.22, No.2, pp.177-188, 1999

[6] Eslami, M. R., Babaei, M. H. and Poultangari, R., “Thermal and mechanical stresses in a functionally graded thick sphere”, International Journal of Pressure Vessels and Piping, Vol.82, No.2, pp.522-527, 2005

[7] Lu, X. and Viljanen, M., “An analytical method to solve heat conduction in layered spheres with time-dependent boundary conditions”, Physics Letters A, Vol.351, No.4-5, pp.274-282, 2006

[8] Algbory, A. M. R. M., “Stress analysis of the multi-layered thick cylinders”, Al-Qadisiya Journal for Engineering Sciences, Vol.4, No.2, pp.51-67, 2011

[9] Zhang, Q., Wang, Z. W., Tang, C. Y., Hu, D. P., Liu, P. Q. and Xia, L. Z., “Analytical solution of the thermo-mechanical stresses in a multilayered composite pressure vessel considering the influence of the closed ends”, International Journal of Pressure Vessels and Piping, Vol.98, pp.102-110, 2012

[10] Siedlecka, U., “Radial heat conduction in a multilayered sphere”, Journal of Applied Mathematics and Computational Mechanics, Vol.13, No.4, pp.109-116, 2014

[11] Singh, S., Jain, P. K. and Rizwan-uddin, “Analytical solution for three-dimensional, unsteady heat conduction in a multilayer sphere”, Journal of Heat Transfer, Vol.138, No.10, 2016

[12] Reuss A., “Berchung der fiessgrenze von mischkristallen auf grund der plastiziatsbedingung fur einkristalle”, Zamm-Jouranl of Applied Mathematics and Mechanics, Vol.9, No.1, pp.49-58, 1929

[13] Liu, B., Feng, X. and Zhang S. M., “The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect”, Composites Science and Technology, Vol.69, No.13, pp.2198-2204, 2009

[14] Ridwan, M., Yoshitake, I. and Nassif, A. Y., “Proposal of design formulae for equivalent elasticity of masonry structures made with bricks of low modulus”, Advances in Civil Engineering, 2017

[15] 石玉清, “熔融還原爐之軸對稱熱應力分析”, 應用力學研究所, 國立台灣大學碩士論文, 台北, 台灣, 2000

[16] Gasser, A., Terny-Rebeyrotte, K. and Boisse, P., “Modelling of joint effects on refractory lining behaviour”, Journal of Materials : Design and Applications, Vol.218, No.1, pp.19-28., 2004

[17] Gruber, D., Andreev, K. and Harmuth, H., “FEM simulation of the thermomechanical behaviour of the refractory lining of a blast furnace”, Journal of Materials Processing Technology, Vol.155, pp.1539-1543, 2004

[18] Wang, L., “Numerical analysis of furnace shell of a certain external combustion hot stove and related design suggestions”, M. S. thesis, Xi’ An University of Architecture and Technology, Shaanxi, China, 2008

[19] Chang, W., “Numerical simulation of the external combustion hot-blast stove’s connector tube section”, M. S. thesis, University of Science and Technology Liaoning, Liaoning, China, 2010

[20] Brulin, J., Roulet, F., Rekik, A., Blond, E., Gasser, A. Nally, R. M. and Micollier, M., “Latest evolution in blast furnace hearth thermo-mechanical stress modelling”, 4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking, 2011

[21] Jiang, D., “Analysis and optimization design of top-combustion type hot blast stove furnace shell considering thermal-stress coupling effect and earthquake effect”, M. S. thesis, Xi’ An University of Architecture and Technology, Shaanxi, China, 2013

[22] Kaymak, Y., Hauck, T., Lin, R. and Rausch, H., “Analysis of thermal stresses in the blast furnace hearth considering the contact of refractory blocks”, International Metallurgical Trade Fair With Congresses, Duesseldorf, Germany, 2015

[23] Yan, K. and Cheng, S., “Stress and deformation analysis of hot blast stove piping system”, Characterization of Minerals, Metals, and Materials, pp.747-756, Springer, Cham, Switzerland, 2017

[24] Ramanenka, D., Antti, M-L., Gustafsson, G. and Jonsén, P., “Characterization of high-alumina refractory bricks and modelling of hot rotary kiln behaviour”, Engineering Failure Analysis, Vol.79, pp.852-864, 2017

[25] Yan, K., “Study on force analysis of top combustion hot blast stove and optimization design of hot blast stove checker brick”, M. S. thesis, University of Science and Technology Beijing, Beijing, China, 2017

[26] Hetnarski, R. B. and Eslami, M. R., “Thermal stresses – advanced theory and applications”, Springer, New York, United States, 2009

[27] Boresi, A. P. and Schmidt, R. J., “Advanced mechanics of materials”, 6th ed, wiley, New York, United States, 1985

[28] Eslami, M. R., Hetnarski, R. B., Ignaczak, J., Noda, N., Sumi, N. and Tanigawa, Y., “Theory of elasticity and thermal stresses”, Springer, Dordrecht, Netherlands, 2013

[29] “ANSYS mechanical user’s guide. release 17.2”, ANSYS Inc., USA, 2016
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw