進階搜尋


下載電子全文  
系統識別號 U0026-1906201721485300
論文名稱(中文) 矽酸鹽岩石中硼元素的微昇華純化技術以及在台灣構造帶的硼同位素地球化學研究
論文名稱(英文) Micro-sublimation for B Purification from Silicate Rocks and B Isotope Geochemical Studies On Taiwan Tectonic Zone
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 105
學期 2
出版年 106
研究生(中文) 畢如蓮
研究生(英文) Ju-lien Pi
學號 L48991025
學位類別 博士
語文別 英文
論文頁數 114頁
口試委員 指導教授-游鎮烽
口試委員-何恭算
口試委員-楊懷仁
口試委員-呂學諭
口試委員-王國龍
中文關鍵字 硼同位素  微昇華  多接收器質譜儀  台灣北部火山帶  中段沖繩海槽  琉球隱沒帶  變質泥岩  鍶釹同位素  脫水作用  同位素交換反應 
英文關鍵字 Boron isotope  Micro-sublimation  MC-ICP-MS  Northern Taiwan Volcanic Zone, Middle Okinawa Trough  Ryukyu subduction  metapelite  Sr/Nd isotopes, dehydration  isotopic exchange reaction 
學科別分類
中文摘要 本研究新發展出一種從溶解的矽酸鹽類岩石中純化出硼,然後分析其硼同位素的方法,並且應用本方法於台灣地體構造區,測量硼同位素的分布並探討在本區地質上的相關意義。研究包括對北部火成岩以及中段沖繩海槽岩漿生成影響因素的探討,以及在中央山脈西側的變質泥岩中,漸進的變質作用對同位素分佈的主要控因。
我們用微昇華技術,研發如何從矽酸鹽岩溶液中良好地分離純化出硼的方法。以九個標準岩樣來做評估測試,包括八個酸性到基性的火成岩和一個泥岩樣本,先將這些樣本(粉末)用HF + mannitol(+ HNO3)酸溶,在岩石溶液中摻入濃的氯化鈉溶液,然後去作微昇華;收集的水滴用來作硼的回收率和其他基質元素含量的檢測,以及用多接受器質譜儀(MC-ICPMS)作準確的硼同位素的測量。
實驗的結果證明微昇華技術可以有效地運用於矽酸鹽樣本中的硼的純化,具有良好的回收率以及極低的實驗過程汙染,所得九個標準岩樣的硼同位素值與文獻報導一致,而未能分離的基質元素(主要是矽)對δ11B測量可能有些微影響,能導致大約0‰ — -0.8‰的偏差,在大多的自然岩石研究中,這樣的準確度是很可接受的。以單個微昇華容器能處理的岩石溶液量而言,對含有5 ppm 以上硼含量的岩石,這個方法相當簡易方便。
相較於傳統的離子層析純化法,本方法沒有來自各種化學試劑和樹酯的潛在汙染,也具有低成本,低人力的優點,提供對矽酸鹽類或一些環境水體中硼同位素地球化學研究一種更便捷有效的方法。
而硼在地表環境中具有顯著易觀察的同位素分異現象,它的同位素和豐度在地殼循環中具良好的指示作用,因為硼的豐度在地表環境中比在地函中大得多,同位素比值也不一樣,而隱沒過程中硼的親流體特性使它易隨流體進入島弧岩漿中。沖繩海槽為琉球隱沒系統的非典型弧後盆地,而台灣北部火山帶(Northern Taiwan Volcanic Zone, NTVZ)位置接近沖繩海槽南端張裂構造帶的後方,關於岩漿成因方面仍有爭議,本研究測量NTVZ以及中段沖繩海槽(middle Okinawa Trough, MOT)的硼同位素,評估琉球隱沒帶對本區火成岩岩漿生成的影響。
在MOT和NTVZ的硼濃度分別是5.8 — 13.6 μg g-1和2.2 — 48.6 μg g-1,NTVZ
火山岩中硼濃度的廣大變異主要源於岩漿形成時不同程度的部分熔融;MOT 的火成岩的Nb/B和δ11B的值為0.5 — 0.6和-2.7‰ — 0.2‰,而在NTVZ的範圍較大,為0.4 — 2.5和-8.6‰ — 2.4‰,Nb/B比值顯示,儘管本區比一般島弧岩漿含有比較少量的隱沒成分,比起一般典型的弧後,它還是很明顯地受到隱沒成分的影響。
配合定年的資料,硼的資料顯示在2.6Ma時,隱沒的菲律賓海板塊尚未影響台灣北部火成岩的生成,但是後來則有相當的影響。而北部火成岩陸上部分混合著不同比例的隱沒沉積物的流體,顯示在此處板塊交界的楔形地函是比較不均質的,可能是來源流體差異或是複雜的地函流動所造成。在MOT 和NTVZ這樣的初期弧後張裂帶附近出現顯著的隱沒成分而來的硼,可能反映了一個冷的板塊以較快且陡的方式隱沒可以更有效地攜帶揮發性元素到深處地函。
硼同位素資料可指示出不同的隱沒端成分來源,混合模式分析結果顯示MOT與NTVZ的岩漿含有從隱沒的受風化海洋地殼或蛇紋岩而來的流體,而部分陸上的NTVZ則受到更多來自沉積物的流體影響,其中以草嶺山的玄武岩最明顯。
上新-更新世以來在台灣地區的造山構造運動在中央山脈形成了一個變質岩帶,包括一系列從低到中高變質度的變質泥岩,本研究初步探討了這些硬頁岩和板岩中硼,以及鍶,釹同位素的分布變化。研究區域為中央山脈西翼的南橫公路段,變質溫度大約在250°C到320°C,硼含量及同位素值隨著向東變質度增高而降低,其分佈大致上可符合雷利分餾(Rayleigh Distillation)的脫水作用(失去50% B)的模式,顯示脫水作用是本變質區硼同位素分佈的主要控因,而變質前的原岩組成則是次要因素。隨著向東變質度增高,鍶同位素比值呈下降、釹同位素呈增加的趨勢,且都在最東側接近海水的鍶釹同位素比值。特別的是,鍶釹同位素值分別和硼含量以及硼同位素值也有良好相關,因為新生代以來陸源沉積物來源並沒有明顯變化,我們推論鍶釹同位素值的分佈變化也是與漸進變質的脫水作用相關,所以本研究提出一個可能的過程為:沉積物中原本即含有不少的碳酸鹽/磷酸鹽類(具海水鍶釹同位素值)隨著深埋部分地溶解到脫水作用的流體中,然後這些流體與沉積物之間發生了同位素交換,使兩者之間鍶釹同位素值逐漸一致。由於同位素交換是一種極緩慢的反應,所以僅僅在地層最老,變質溫度較高的最東側達到與海水值接近平衡的狀態,愈向西影響愈小。過去文獻中,與海水的鍶釹同位素交換現象在一些低-中溫風化的海洋蛇紋岩也曾觀察到,但對變質沉積岩則鮮少有報導。
英文摘要 In this thesis, a method for boron (B) purification for silicate rocks has been developed. This method is applied to the B isotopes geochemistry studies on the magma genesis of Northern Taiwan Volcanic Zone (NTVZ) and middle Okinawa Trough (MOT), and the controlling processes in low-grade metamorphic pelite in western Central Range of Taiwan.
The technique of micro-sublimation for B separation in silicates has been evaluated carefully. Nine international standards (rock powder) comprising eight felsic to mafic igneous rocks and one clay were dissolved in acids using the HF + mannitol method. These rock solutions were then doped with concentrated NaCl solution and subjected to the B micro-sublimation processes. Isolated drops of micro-sublimation were examined for matrix elements, B recovery, and used for high precision isotopic measurements by MC-ICPMS.
These experimental results confirm that the micro-sublimation technique can be used to isolate B in digested silicate solutions efficiently with very low blank and excellent recovery. The derived isotopic values in rock standards are in good agreement with those of literature reported. The inseparable matrix after micro-sublimation may make a small deviation typically of 0‰ to -0.8‰ δ11B values for most silicates on B isotopic measurement using multi-collector inductively coupled plasma mass spectrometry. This NaCl doping + micro-sublimation technique is readily applicable for B isotopic measurements of silicate rocks containing medium to high B levels (e.g. > 5 ppm).
This study presents a novel NaCl doping modified micro-sublimation procedure for B isolation in digested silicates. This protocol enjoys low B blank, and is a less labor intensive and simple procedure compared with conventional ion exchange purification. It can be used to facilitate B isotopic measurements in silicates and promote - geochemical applications in environmental aqueous solutions and rocks.
Boron (B) is an excellent geochemical tracer for investigating crustal recycling processes at convergent margins, due to its high fluid mobility under high P–T conditions, distinct elemental abundances and isotopic compositions in the mantle wedge and subducting slabs. The Northern Taiwan Volcanic Zone (NTVZ), wherein the nature of magma genesis has long been a topic of debate, is located at the rear side of the Okinawa Trough (OT), an atypical back-arc rift in the Ryukyu subduction system. In this study, B and B isotopes (δ11B) were measured in 19 volcanic rocks collected from the NTVZ and the middle Okinawa Trough (MOT) to assess the influence of the Ryukyu subduction system on magma genesis.
The B concentrations in the MOT and NTVZ volcanic rocks are 5.8 to 13.6 μg g-1 and 2.2 to 48.6 μg g-1, respectively. The large B abundances variation in the NTVZ was caused mainly by variable degrees of partial melting. The Nb/B and δ11B in the MOT have small ranges of 0.5 to 0.6 and -2.7‰ to 0.2‰, respectively, whereas they range widely from 0.4 to 2.5 and from -8.6‰ to 2.4‰, respectively in the NTVZ. These Nb/B values suggest that the magma contain a smaller subduction component than that normally observed in arcs, although this component is still more substantial than in a typical back-arc setting.
The Nb/B and δ11B results indicate insignificant influence of the subducting Philippine Sea Plate at 2.6 Ma, but it becomes more substantial later in the NTVZ. The mixing proportions of sediment derived fluids in onshore volcanoes in the NTVZ imply a rather heterogeneous mantle wedge near the plate boundary, most likely due to either a heterogeneous source of slab derived fluids or more complicated mantle flow. A substantial B flux from the subducting slab in the incipient back-arc rifting in the MOT and NTVZ may reflect characteristics of a cold, steep and fast subducting slab, which may be capable of carrying volatiles efficiently into greater depth in subduction zones.
The δ11B data also provide insight into the nature of the different subduction components. A three-end-member mixing model suggests that MOT and NTVZ magmas may have incorporated subduction fluids derived from altered oceanic crust or serpentinite, whereas the onshore volcanoes in the NTVZ, and in particular in the Tsaolingshan, may have involved a higher proportion of sediment component
Plio-Pleistocene orogeny in Taiwan tectonic zones made a regional metamorphic belt in Central Range, where provide a series of low to medium-high grade metapelite. This study preliminarily explored the B isotopes geochemistry and Sr, Nd isotopes behavior in the argillite to slate samples from the South Transverse Road, western wing of the Central Range. The metamorphic temperature in this study area is from ca. 250°C to 320°C. The B content and δ11B values generally have a decreasing trend from west to east (increasing metamorphism). The Rayleigh Distillation calculation shows that the trend is roughly coincide with the dehydration model of 50% B loss and the fractionation factors in equilibrium. The calculation results support dehydration process as a major control on B isotopes distribution. And the minor factor may be the protolith prior to the metamorphism. The Sr, Nd isotopes ratios also show approximate decreasing and increasing trends, respectively, from east to west (increasing metamorphism), and both approach the values of seawater in the east end. Surprisingly, the Sr, Nd isotopes well correlated to the B contents and δ11B values. Based on the rather constant continental source of the sediment, we assumed that the Sr, Nd isotopes distribution also related to the dehydration process during progressive metamorphism. We propose a scenario that the fluids flux, contain notable amount of Sr and Nd with isotopic value of seawater, interact with the terrestrial part of the sediments and the isotopic exchange occurred. As isotopic exchange is a very slow reaction, the nearly equilibrium only reached in the east end, where with oldest strata and higher temperature. The isotopic exchange phenomena of Sr, Nd isotopes with seawater were observed in some studies of serpentinite, while rarely reported in meta-sediments.
論文目次 CHAPTER 1 Introduction 1
1.1 An introduction to the background of this thesis 1
1.2 General B isotopic geochemistry 4
1.3 B isotope studies in subduction zone 8
CHAPTER 2 Micro-sublimation separation of boron in rock samples for isotopic measurement by MC-ICPMS 13
Abstract 13
2.1 Introduction 14
2.2 Experimental Procedures 16
2.2.1 Samples and reagents 16
2.2.2 Sample dissolution 17
2.2.3 Boron concentration measurements 18
2.2.4 Micro-sublimation for B isolation 19
2.2.5 B isotopic measurements 22
2.3 Results 24
2.4 Discussion 26
2.4.1 Blank contributions 26
2.4.2 Modified acid dissolution and B concentration measurement 27
2.4.3 Efficiency of the NaCl-doping modified micro-sublimation for silicates 29
2.5 Conclusions 33
CHAPTER 3 The influence of Ryukyu subduction on magma genesis in the Northern Taiwan Volcanic Zone and Middle Okinawa Trough — Evidence from boron isotopes 36
Abstract 36
3.1 Introduction 37
3.2 Geological Setting 39
3.3 Samples and previous studies 43
3.4 Analytical methods 45
3.5 Results 48
3.6 Discussion 52
3.6.1 Factors controlling B abundance in the MOT and NTVZ 52
3.6.2 Sources of boron in the NTVZ and MOT 58
3.6.3 Mixing model calculations using B, Sr, Nd, and Pb isotopes 60
3.6.4 Implications for the tectonic environment of the NTVZ and MOT magmatism 65
3.7 Conclusions 69
Chapter 4: A preliminary study of the boron isotopic distribution in low-grade metamorphic pelitic rocks from the western section of the Southern Transverse profile, Taiwan 70
Abstract 70
1. Introduction 71
2. Sample sites and geological background 72
3. Methods 77
4. Results 77
5. Discussion 80
5.1 Terrestrial source, depositional environment, and diagenesis 81
5.2 Dehydration during metamorphism and the Rayleigh distillation model 82
5.3 Possible impact on tourmaline crystallization 85
5.4 Other implications from corresponding Sr–Nd isotopic data 87
6. Summary 92
CHAPTER 5 Conclusions 94
References 98
Chinese References 112
Appendix: Supplementary Information 113
參考文獻 References

Allegre, Claude J., 2008. Isotope Geology. Cambridge University Press.

Aggarwal, J.K., Palmer, M.R., 1995. Boron isotope analysis. A review. Analyst 120, 1301-1307.

Aggarwal, J.K., Sheppard, D., Mezger, K., Pernicka, E., 2003. Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: origin of boron in the Ngawha geothermal system, New Zealand. Chemical Geology 199, 331-342.

Aggarwal, J.K., Mezger, K., Pernicka, E., Meixner, A., 2004. The effect of instrumental mass bias on measurements: a comparison between thermal ionisation mass spectrometry and multiple-collector ICP-MS. International Journal of Mass Spectrometry 232, 259-263.

Aggarwal, J. Böhm, F., Foster, G., Halas, S., Hönisch, B., Jiang, S.Y., Kosler, J., Liba, A., Rodushkin, I., Sheehan, T., Shen, J.S., Tonarini, S., Xie, Q., You, C.F., Zhao, Z.Q., Zuleger, E., 2009. How well do non-traditional stable isotope results compare between different laboratories: results from the interlaboratory comparison of boron isotope measurements. Journal of Analytical Atomic Spectrometry 24, 825-831.

Barbara, L.D., Darrell, J.H., 2011. A geologic DVD. Elements 7, No. 5, 301-306.

Bebout, G.E., Ryan J.G., Leeman W.P., 1993. B-Be systematics in subduction-related metamorphic rocks: Characterization of the subducted component. Geochimica et Cosmochimica Acta 51, 2227-2237.

Bebout, G.E., Ryan, J. G., Leeman, W.P., Bebout, A.E., 1999. Fractionation of trace elements by subduction-zone metamorphism effect of convergent-margin thermal evolution. Earth and Planetary Science Letters 171, 63-81.

Bebout, G.E., Nakamura, E., 2003. Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology 31, 407-410.

Bebout, G.E., Agard, P., Kobayashi, K., Moriguti, T., Nakamura, E., 2013. Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chemical Geology 342, 1-20.

Benton, L.D., Ryan, J.G., Tera, F., 2001 Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth and Planetary Science Letters 187, 273-282.

Beyssac, O., Simoes, M., Avouac, J.P., Farley, K.A., Chen, Y.-G., Chan, Y.-C., Goffé, B., 2007. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26.

Boschi, C., Dini, A., Früh-Green, G.L., Kelley, D.S., 2008. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N): Insights from B and Sr isotope data. Geochimica et Cosmochimica Acta 72, 1801-1823.

Cannaò, E., Agostini, S., Scambelluri, M., Tonarini, S., Godard, M., 2015. B, Sr and Pb isotope geochemistry of high-pressure Alpine metaperidotites monitors fluid-mediated element recycling during serpentinite dehydration in subduction mélange (Cima di Gagnone, Swiss Central Alps). Geochimica et Cosmochimica Acta 163, 80-100.

Chaussidon, M., Jambon, A., 1994. Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications. Earth and Planetary Science Letters 121, 277-291.

Chen, C.-H. (Ed.), 1990. Igneous rocks of Taiwan (in Chinese). Central Geological Survey, Special Publication 1, 137 pp.

Chen, C.H., 1997. Extensional collapse of the northern Taiwan mountain belt: comment. Geology 25, 855–856.

Chen, C.-H., Jahn, B.-H., Lee, T., Chen, C.H, Cornichet, J. 1990. Sm-Nd isotopic geochemistry of sediments from Taiwan and implications for the tectonic evolution of southeast China. Chemical Geology 88, 317-332.

Chen, C.-H., Wang, J. H. (1995) An illustration to the metamorphic facies map for Taiwan, 2nd edition. Published by Central Geological Survey. (in Chinese).

Chen, W. S. 2016 Taiwan Geology (in Chinese).

Chung, S.-L., Yang, T.F., Lee, C.-Y., Chen, C.-H., 1995. The igneous provinciality in Taiwan: consequence of continental rifting superimposed by Luzon and Ryukyu subduction systems. Journal of Asian Earth Sciences 11, 73-80.

Deschamps, F., Guillot, S., Godard, M., Andreani, M., Hattori, K., 2011. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova 23, 171-178.

Dia, A.N., Cohen, A.S., O'Nions, R.K., Shackleton, N.J., 1992. Seawater Sr isotope variation over the past 300 kyr and influence of global climate cycles. Nature 356, 786-788.

Dickin, Alan P. (1995, 2005) Radiogenic Isotope geology. (first published 1995, second edition published 2005) Cambridge University Press.

D'Orazio, M., 1999. Boron Determination in Twenty One Silicate Rock Reference Materials by Isotope Dilution ICP-MS. Geostandards Newsletter 23, 21-29.

Gaillardet, J., Lemarchand, D., Göpel, C., Manhès, G., 2001. Evaporation and Sublimation of Boric Acid: Application for Boron Purification from Organic Rich Solutions. Geostandards Newsletter 25, 67-75.

Genske, F.S., Turner, S.P., Beier, C., Chu M.-F., Tonarini, S., Pearson, N.J., Haase, K.M., 2014. Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chemical Geology 373, 27-36.

Gonfiantini, R., Tonarini, S., Gröning, M., Adorni-Braccesi, A., Al-Ammar A.S., Astner, M., Bächler, S., Barnes, R.M., Bassett, R. L., Cocherie, A., Deyhle, A., Dini, A., Ferrara G., Gailardet, J., Grimm, J., Guerrot, C., Krähenbühl, U., Layne, G., Lemerchand, D., Meixner, A., Northington, D. J., Pennisi, M., Reitznerová, E., Rodushkin, I., Sugiura, N., Surberg, R., Tonn, S., Wiedenbeck, M., Wunderli, S., Xiao, Y., Zack, T., 2003. Intercomparison of Boron Isotope and Concentration Measurements. Part II: Evaluation of Results. Geostandards Newsletter 27, 41–57.

Gregoire, D.C., 1987. Determination of Boron Isotope Ratios in Geological Materials by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 59, 2479-2484.

Guerrot, C., Millot, R., Robert, M., Négrel, P., 2011. Accurate and High-Precision Determination of Boron Isotopic Ratios at Low Concentration by MC-ICP-MS (Neptune). Geostandards and Geoanalytical Research 35, 275-284.

Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570-571, 1-41.

Harvey, J., Garrido, C.J., Savov, I., Agostini, S., Padrón-Navarta, J.A., Marchesi, C., Sánchez-Vizcaíno V.L., Gómez-Pugnaire, M.T., 2014a. 11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology 376, 20-30.

Harvey, J., Savov, I.P., Agostini, S., Cliff, R.A., Walshaw, R., 2014b. Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209. Geochimica et Cosmochimica Acta 126, 30-48.

Hemming, N.G., Hanson, G.N., 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Coemochimica Acta 56, 537-543.

Ho, C.S. 1986 Taiwan Geology (in Chinese).

Hoefs, J.,2009. Stable isotope geochemistry 6th edition, Springer-Verlag, Berlin Heidelberg. Chapter 2, 45–48.

Horng, C.-S., Roberts, A.P., 2006. Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters 241, 750-762.

Horng et al., 2011 (in Chinese).

Horng, C.-S., Huh, C.-A., Chen, K.-H., Lin, C.-H., Shea, K.-S., Hsiung, K.-H., 2012. Pyrrhotite as a tracer for denudation of the Taiwan orogen, Geochem. Geophys. Geosyst., 13, Q08Z47, doi:10.1029/2012GC004195.

Hu, W.D., 1991. Determination of boron in high-purity silica using direct current plasma emission spectrometry. Analytica Chimica Acta 245, 207-209.

Hulett, S.R.W., Antonio Simonetti, E. Troy Rasbury, Hemming, N.G., 2016. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nature Geoscience 9, 904-909.

Ishikawa, T., Nakamura, E., 1990. Suppression of Boron Volatilization from a Hydrofluoric Acid Solution Using a Boron-Mannitol Complex. Analytical Chemistry 62, 2612-2616.

Ishikawa, T., Nakamura, E., 1993. Boron isotope systematics of marine sediments. Earth and Planetary Science Letters 117, 567-580.

Ishikawa, T., Nakamura, E., 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370, 205-208.

Ishikawa, T., Tera, F., 1997. Source, composition and distribution of the fluid in the Kurile mantle wedge: Constraints from across-arc variations of B/Nb and B isotopes. Earth and Planetary Science Letters 152, 123-138.

Ishikawa, T., Tera, F., 1999. Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics. Geology 27, 83-86.

Ishikawa, T., Tera, F., Nakazawa, T., 2001. Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochimica et Cosmochimica Acta 65, 4523-4537.

Ishikawa, T., Nagaishi, K., 2011. High-precision isotopic analysis of boron by positive thermal ionization mass spectrometry with sample preheating. Journal of Analytical Atomic Spectrometry 26, 359-365.

Joachimski, M.M., Simon, L., van Geldern, R., Lécuyer, C., 2005. Boron isotope geochemistry of Paleozoic brachiopod calcite: Implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochimica et Cosmochimica Acta 69, 4035-4044.

Kasemann, S., Meixner, A., Rocholl, A., Vennemann, T., Rosner, M., Schmitt, A.K., Wiedenbeck, M., 2001. Boron and Oxygen Isotope Composition of Certified Refer ence Materials NIS T SRM 610/612 and Reference Materials JB-2 and JR-2. Geostandards Newsletter 25, 405-416.

King, R.L., Bebout, G.E., Grove, M., Moriguti, T., Nakamura, E., 2007. Boron and lead isotope signatures of subduction-zone mélange formation: Hybridization and fractionation along the slab–mantle interface beneath volcanic arcs. Chemical Geology 239, 305-322.

Klochko, K., Kaufman, A.J., Yao, W., Byrne, R.H., Tossell, J.A., 2006. Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters 248, 276-285.

Ko, Y.-T., Kuo, B.-Y., Wang, K.-L., Lin, S.-C., Hung, S.-H., 2012. The southwestern edge of the Ryukyu subduction zone: A high Q mantle wedge. Earth and Planetary Science Letters 335-336, 145-153. http://dx.doi.org/10.1016/j.epsl.2012.04.041.

Krolikowska-Ciaglo, S., Deyhle, A., Hauff, F., Hoernle, K., 2007. Boron isotope geochemistry and U–Pb systematics of altered MORB from the Australian Antarctic Discordance (ODP Leg 187). Chemical Geology 242, 455-469.

Leeman, W.P., Sisson, V. B., Reid, M. R., 1992. Boron geochemistry of the lower crust: Evidence from granulite terranes and deep crustal xenoliths. Geochimica et Cosmochimica Acta 56, 775-788.

LEEMAN, W.P., Carr, M.J., MORRIS, J.D.,1994. Boron geochemistry of the Central American Volcanic Arc: Constraints on the genesis of subduction-related magmas. Geochimica et Cosmochimica Acta 58, 149-168.

Leeman, W.P., Tonarini, S., Chan, L.H., Borg, L.E., 2004. Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chemical Geology 212, 101-124.

Liu, Y., Tossell, J., 2005. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochimica et Cosmochimica Acta 69, 3995-4006.

Leeman, W.P., Tonarini, S., Chan, L.H., Borg, L.E., 2004. Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chemical Geology 212, 101-124.

Makishima, A., Nakamura, E., Nakano, T., 1997. Determination of Boron in Silicate Samples by Direct Aspiration of Sample HF Solutions into ICPMS. Anal. Chem. 69, 3754-3759.

Marschall, H.R., Altherr, R., Ludwig, T., Kalt, A., Gméling, K., Kasztovszky, Z., 2006. Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochimica et Cosmochimica Acta 70, 4750-4769.

Marschall, H.R., Altherr, R., Kalt, A., Ludwig, T., 2008. Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry. Contributions to Mineralogy and Petrology 155, 703-717.

McArthur, J.M., Howarth, R.J., Shields, G.A., 2012. Strontium Isotope Stratigraphy. 127-144.

Meredith, K., Moriguti, T., Tomascak, P., Hollins, S., Nakamura, E., 2013. The lithium, boron and strontium isotopic systematics of groundwaters from an arid aquifer system: Implications for recharge and weathering processes. Geochimica et Cosmochimica Acta 112, 20-31.

MILLS, J.C., 1986. AN ACID DISSOLUTION PROCEDURE FOR THE DETERMINATION OF BORON IN COAL ASH AND SILICATES BY INDUCTIVELY-COUPLED PLASMA EMISSION SPECTROMETRY WITH CONVENTIONAL GLASS NEBULIZERS. Analytica Chimica Acta 183, 231-238.

Mohan, M.R., Kamber, B.S., Piercey, S.J., 2008. Boron and arsenic in highly evolved Archean felsic rocks: Implications for Archean subduction processes. Earth and Planetary Science Letters 274, 479-488.

Moran, A.E., Sisson, V.B., Leeman, W.P., 1992. Boron depletion during progressive metamorphism: Implications for subduction processes. EPSL 111, 331-349.

Moriguti, T., Shibata, T., Nakamura, E., 2004. Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chemical Geology 212, 81-100.

Morris, J.D., Leeman, W.P., Tera, F., 1990. The subducted component in island arc lavas: Constraint from Be isotopes and B-Be systematics. Nature 344, 31-36.

Nagaishi K., Ishikawa, T., 2009. A simple method for the precise determination of boron, zirconium, niobium, hafnium and tantalum using ICP-MS and new results for rock reference samples. Geochemical Journal 43, 133-141.

Nakamura, E., Ishikawa, T., Birck, J.-L., Allegre, C. J., 1992. Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex. Chemical Geology 94, 193-204.

Nakamura, M. 2004. Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data. Earth and Planetary Science Letters 217, 389-398.

Noll, P.D., Newsom, H.E., Leeman, W. P., Ryan, J. G., 1996. The role of hydrothermal fluids in the production of subduction zone magmas:
Evidence from siderophile and chalcophile trace elements and boron. Geochimica et Coemochimica Acta 60, 587-611.

Ohr, M., Halliday, A.N., Peacor, D.R., 1991. Sr and Nd isotopic evidence for punctuated clay diagenesis, Texas Gulf Coast. Earth and Planetary Science Letters 105, 110-126.

Pabst, S., Zack, T., Savov, I.P., Ludwig, T., Detlef, R., Tonarini, S., Vicenzi, E.P., 2012. The fate of subducted oceanic slabs in the shallow mantle: Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132-133, 162-179. doi:10.1016/j.lithos.2011.11.010.

Palmer, M.R., 1991. Boron-isotope systematics of Halmahera arc (Indonesia) lavas: Evidence for involvement of the subducted slab. Geology 19, 215-217.

Peacock, S.M., Hervig, R.L., 1999. Boron isotopic composition of subduction-zone metamorphic rocks. Chemical Geology 160, 281-290.

Pi, J.-L., You, C.-F., Chung, C.-H., 2014. Micro-sublimation separation of boron in rock samples for isotopic measurement by MC-ICPMS. Journal of Analytical Atomic Spectrometry 29, 861-867. doi:10.1039/c3ja50344e.

Pi, J.-L., You, C.-F., Wang, K.-L., 2016. The influence of Ryukyu subduction on magma genesis in the Northern Taiwan Volcanic Zone and Middle Okinawa Trough — Evidence from boron isotopes. Lithos 260, 242-252.

Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325-394.

Rollinson, H. R. Using geochemical data: evaluation, presentation, interpretation. Harlow, Essex, England : Longman Scientific & Technical ; New York : Copublished in the U.S. with J. Wiley & Sons, 1993.

Romer, R.L., Meixner, A., Hahne, K., 2013. Lithium and boron isotopic composition of sedimentary rocks — The role of source history and depositional environment: A 250Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Research.

Romer, R.L., Meixner, A., 2014. Lithium and boron isotopic fractionation in sedimentary rocks during metamorphism – The role of rock composition and protolith mineralogy. Geochimica et Cosmochimica Acta 128, 158-177.

Rosner, M.S., 2003. Boron as a tracer for material transfer in subduction zones. Ph.D. Thesis, der Universität Postdam.

Rosner, M., Erzinger, J., Franz, G., Trumbull, R.B., 2003. Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochemistry Geophysics Geosystems 4(8), 9005. doi:10.1029/2002GC000438.

Rosner, M., Meixner, A. 2004. Boron Isotopic Composition and Concentration of Ten Geological Reference Materials. Geostand. Geoanal. Res. 28, 431-441.

Ryan, J.G., Langmuir C.H., 1993. The systematics of boron abundances in young volcanic rocks. Geochimica et Cosmochimica Acta 57, 1489-1498.

Ryan, J.R., Leeman, W.P., Morris, J.D., Langmuir, C.H., 1996. The boron systematics of intraplate lavas: Implications for crust and mantle evolution. Geochimica et Cosmochimica Acta 60, 415-422.

Savov, I.P., Ryan, J.G., D'Antonio, M., Kelly, K., Mattie, P., 2005. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems 6, 4, Q04J15, doi:10.1029/2004GC000777

Savov, I.P., Ryan, J.G., D'Antonio, M., Fryer, P., 2007. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research 112, B09205. doi:10.1029/2006JB004749

Scambelluri, M., Tonarini, S., 2012. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40, 907-910. doi:10.1130/G33233.1.

Shinjo, R., 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system. Chemical Geology 157, 69-88.

Shinjo, R., Chung, S.-L., Kato, Y., Kimura, M., 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research 104, 10591-10608.

Sibuet, J.-C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.-P., Hilde, T.W.C., Kimura, M., Chiao, L.-Y., Marsset, B., Muller, C., Stéphan, J.-F., 1987. Back arc extension in the Okinawa Trough. Journal of Geophysical Research 92, 14041-14063.

Sibuet, J.-L., Deffontaines, B., Hsu, S.-K., Thareau, N., Le Forrmal, J.-P., Liu, C.-S., ACT party, 1998. Okinawa trough backarc basin: Early tectonic and magmatic evolution. Journal of Geophysical Research 103, 30245-30267.

Smith, H.J., Leeman, W.P., Davidson, J., Spivack, A.J., 1997. The B isotopic composition of arc lavas from Martinique, Lesser Antilles. Earth and Planetary Science Letters 146, 303-314.

Spandler, C., Pirard, C., 2013. Element recycling from subducting slabs to arc crust: A review. Lithos 170-171, 208-223.

Spivack, A.J., Palmer M.R., Edmond, J.M., 1987. The sedimentary cycle of the boron isotopes. Geochimica et Cosmochimica Acta 51, 1939-1949.

Straub, S.M., Layne, G.D., 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth and Planetary Science Letters 198, 25-39.

Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57-76.

Teng, L.S., 1996. Extensional collapse of the northern Taiwan mountain belt. Geology 24, 949-952.

Tonarini S., Pennisi, M., Leeman, W.P., 1997. Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation. Chemical Geology 142, 129-137.

Tonarini, S., Armienti, P., D’Orazio, M., Innocenti, F., 2001. Subduction-like fluids in the genesis of Mt. Etna magmas: evidence from boron isotopes and fluid mobile elements. Earth and Planetary Science Letters 192, 471-483.

Tonarini, S., Agostini, S., Innocenti, F., Manetti, P., 2005. δ11B as tracer of slab dehydration and mantle evolution in Western Anatolia Cenozoic Magmatism. Terra Nova 17(3), 259-264.

Tonarini, S., Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., 2007. Evidence for serpentinite fluid in convergent margin systems: The example of El Salvador (Central America) arc lavas. Geochemistry Geophysics Geosystems 8, Q09014. doi:10.1029/2006GC001508.

Tonarini, S., Leeman W.P., Leat, P.T., 2011. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: Evidence from boron isotope systematics. Earth and Planetary Science Letters 301, 275-284, dio:10.1016/j.epsl.2010.11.008.

Toshio Nakano, Nakamura, E., 2001. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Physics of the Earth and Planetary Interiors 127, 233-252.

Vogl, J., Rosner, M., Pritzkow, W., 2011. Development and validation of a single collector SF-ICPMS procedure for the determination of boron isotope ratios in water and food samples. Journal of Analytical Atomic Spectrometry 26, 861.

Wang, B.-S., You, C.-F., Huang, K.-F., Wu, S.-F., Aggarwal, S.K., Chung, C.-H., Lin, P.-Y., 2010. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta 82, 1378-1384.

Wang S. L., 1998. Ar-Ar dating and geochemistry of volcanic rocks dredged from the middle Okinawa Trough (in Chinese). Master’s Thesis. Department of Geosciences, National Taiwan University, 141 pp.

Wang, K.L., Chung, S.L., Shinjo, R., Chen, C.H., Yang, T.F., Chen, C.-H., 1999. Post collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics 308, 363-376.

Wang, K.-L., Chung, S.L., O’Reilly, S.Y., Sun S.-S., Shinjo, R., Chen, C.-H., 2004. Geochemical Constraints for the Genesis of Post-collisional Magmatism and the Geodynamic Evolution of the Northern Taiwan Region. Journal of Petrology 45, 975-1011. doi:10.1093/petrology/egh001.

Wei, G., Wei, J., Liu, Y., Ke, T., Ren, Z., Ma, J., Xu, Y., 2013. Measurement on high-precision boron isotope of silicate materials by a single column purification method and MC-ICP-MS. Journal of Analytical Atomic Spectrometry 28, 606.

Williams, L.B. Lervig, R.L., Holloway, J.R., Hutcheon, I., 2001. Boron isotope geochemistry during diagenesis. Part I. Experimental determination of fractionation during illitization of smectite. Geochimica et Cosmochimica Acta 65, 1769-1782.

Wilson, M., 2007. Igneous Petrogenesis—A global tectonic approach. Springer, The Netherlands. 480 pp.Wunder, B., Meixner, A., Romer, R.L., Wirth, R., Heinrich, W., 2005. The geochemical cycle of boron: Constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84, 206-216.

Wunder, B., Meixner, A., Romer, R., Wirth, R., Heinrich, W., 2005. The geochemical cycle of boron: Constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84, 206-216.

Yamaoka, K., Hong, E., Ishikawa, T., Toshitaka, G., Kawahata, H., 2015. Boron isotope geochemistry of vent fluids from arc/back-arc seafloor hydrothermal systems in the western Pacific. Chemical Geology 392, 9-18.

You, C.-F., Spivack, A.J., Smith, J.H., Gieskes, J.M., 1993. Mobilization of boron in convergent margins: Implications for the boron geochemical cycle. Geology 21, 207-210.

You, C.-F., Butterfield, D.A., Spivack, A.J., Gieskes, J.M., Gamo, T., Campbell, A.J., 1994. Boron and halide systematics in submarine hydrothermal systems: Effects of phase separation and sedimentary contributions. Earth and Planetary Science Letters 123, 227-238.

You, C.-F., Chan, L.-H., Spivack, A.J., Gieskes, J.M., 1995. Lithium, boron, and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nankai Trough: Implications for fluid expulsion in accretionary prisms. Geology 23, 37-40.

You, C.F., Castillo, P.R., Gieskes, J.M., Chan, L.H., Spivack, A.J., 1996. Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters 140, 41-52.

You, C.F., Gieskes, J.M.,, 2001. Hydrothermal alteration of hemi-pelagic sediments: experimental evaluation of geochemical processes in shallow subduction zones. Applied Geochemistry 16, 1055-1066.

Yui, T.-F., 2005. Isotopic Composition of Carbonaceous Material in Metamorphic Rocks from the Mountain Belt of Taiwan. International Geology Reviews 47, 310-325.

Zhang, W., Hu, Z., Liu, Y., Chen, L., Chen, H., Li, M., Zhao, L., Hu, S., Gao, S., 2012. Reassessment of HF/HNO3 Decomposition Capability in the High-Pressure Digestion of Felsic Rocks for Multi-Element Determination by ICP-MS. Geostandards and Geoanalytical Research 36, 271-289.

Chinese References
中文參考文獻

陳肇夏、王京新 台灣變質相圖說明 第二版 經濟部中央地質調查所特刊 第二號,第1-51頁,民國八十四年十月

陳文山 主編, 台灣地質概論 中華民國地質學會出版, 2016年5月

何春蓀 編著, 台灣地質概論 台灣地質圖說明書, 1986 增訂第二版; 經濟部中央地質調查所出版

洪崇勝, 陳國航, 林俊宏. 臺灣北部橫貫公路低度變質岩之岩石磁學兼論雪山山脈與中央山脈之地層對比. 經濟部中央地質調查所特刊 25, 167-179. 民國100年12月

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-06-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-06-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw