進階搜尋


下載電子全文  
系統識別號 U0026-1906201710494100
論文名稱(中文) 水冷式與氣冷式機車引擎冷卻系統熱傳分析
論文名稱(英文) Heat Transfer Analysis of Water and Air Cooling Motorcycle Engine
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 陳柏岡
研究生(英文) Po-Kang Chen
學號 N16044072
學位類別 碩士
語文別 中文
論文頁數 175頁
口試委員 指導教授-張錦裕
口試委員-呂金生
口試委員-陳寒濤
口試委員-林建南
中文關鍵字 水冷引擎  氣冷引擎 
英文關鍵字 Water-Cooled Engine  Air-Cooled Engine 
學科別分類
中文摘要 機車在台灣以及東南亞為最普遍使用之交通工具,而機車的冷卻系統分為水冷式與氣冷式。機車引擎的散熱系統是直接影響引擎性能的因素,過高的溫度會使零件損壞,過低的溫度會使油耗增加與熱效率降低,故冷卻系統的設計成為很重要的關鍵。冷卻系統設計的優劣與冷卻流體的流量,流速,幾何形狀有關,其中又以幾何形狀影響最大。本文針對一水冷引擎冷卻系統與一氣冷引擎冷卻系統做研究探討。
水冷引擎方面,本文建立光陽LFK5,400cc四行程單缸水冷引擎之數值模型,在不改變引擎整體設計下,設定在轉數6000rpm,探討12種汽缸與汽缸頭間墊片不同開口數,流場及溫度場的結果。Case 1為原始設計開口數為2個開口,Case 2到Case 6也皆是2個開口並做不同方式的排列,Case 7到Case 9做3個開口的排列,Case 10開4個口,Case 11開5個口,Case 12開口全開。透過數值模擬分析水套內之流場及引擎溫度場之分佈。再由機車開發商光陽公司提供引擎運轉時之實際溫度,與數值結果進行比對,發現最大誤差約為10 %左右。此外以3D列印之方式印製一透明之引擎水套,且自行製作汽缸與汽缸頭間之墊片,建立一套易於觀測的實驗系統,觀察流體在水套內之實際流動,將所觀察之結果以照片方式呈現並與數值模擬所得流場進行交互比對。由數值結果可知,隨著開口數增加,流量隨之增加3~20.2 %,而平均熱傳係數卻是降低3~12 %,以此說明提升流量大小並不能直接增加散熱效益,而是該探討流動分佈關係。於結論中發現最適合的開口配置,以利提供機車廠商未來水套設計準則。
氣冷引擎方面,本文建立光陽AFA9,163cc單缸氣冷引擎數值模型,模擬風扇流罩的流場對散熱的影響,以及氣缸表面上的熱傳係數。以3000rpm(機車起步轉數), 5000rpm(一般在市區騎乘運行轉數),以及7000rpm(高速運轉)三個不同轉數下為條件,透過模擬找出車廠發現在火星塞處散熱不佳的原因。模擬結果顯示,當風扇轉數上升,流量從3上升到 7.1。熱傳係數也隨之提高。在3000rpm轉數下熱傳係數約為20~150,5000rpm轉數下熱傳係數約30~270,7000rpm轉數下熱傳係數約為50~300。並且發現導風風罩設計上的幾何形狀使得大部分氣流集中在氣缸第一散熱鰭片以及氣缸頭最底層鰭片,較少的流體往火星塞側進入,造成散熱不佳的狀況。
英文摘要 The cooling system of the motorcycle is divided into water-cooling and air-cooling. The performances of the cooling system are related to the flow rate, flow velocity and geometry of the cooling system and the geometry influence the flow field the most. In the water-cooling study, a 3-D numerical model of a 400 c.c. single cylinder water-cooled scooter engine is established and evaluated through computational fluid dynamics (CFD) with conjugated heat transfer scheme to show the temperature distribution of the engine. In order to observe the real coolant flowing through inside the water jacket, we establish a transparent water jacket model through 3-D printer. For the sake of developing the guideline of the water jacket, we arrange 12 kinds of arrangements of the gasket holes to acquire different flow fields and thermal results. It is observed that the flow rate of each case is increased from 3% to 20% with the increasing number of the gasket holes. However, the average heat transfer coefficient decreases from 3% to 15%. In the air-cooling study, a 3-D numerical model of a 163 c.c. single cylinder air-cooling engine is established. Engine working rotations are set at 3000 rpm, 5000 rpm, and 7000 rpm to simulate the flow field and heat transfer coefficient of the cooling-system to find out the location of bad cooling performances. The result shows that the bad design of the wind case led to ununiformed thermal distribution of the fin No.1 at cylinder and high temperature at the plug.
論文目次 摘要 I
Abstract III
致謝 XI
目錄 XII
表目錄 XIV
圖目錄 XV
符號說明 XX
第一章 緒論 1
1. 1前言 1
1. 2文獻回顧 3
1. 3研究目的及方法 9
第二章 理論分析 16
2.1 水冷引擎分析 16
2.1.1.物理模型 16
2.1.2統御方程式 17
2.1.1.邊界條件 21
2.1.4模擬之設計參數 22
2.2 氣冷引擎分析 38
2.2.1.物理模型 38
2.2.2統御方程式 38
2.2.3邊界條件 40
2.2.4模擬之設計參數 40
第三章 數值分析 46
3. 1數值方法 46
3. 2格點測試 47
3.2.1水冷引擎分析 47
3.2.2氣冷引擎分析 48
3. 3解題流程 49
3. 4收斂條件 49
第四章 實驗設備及方法 60
4. 1水套實驗介紹及設備 60
4. 2實驗步驟 61
第五章 結果與討論 67
5.1水冷引擎分析 67
5.1.1模擬結果之驗證 67
5.1.2不同墊片開口分佈下之流場解析 68
5.1.3水套熱傳係數分佈之比較 79
5.1.4比較引擎內溫度場之分佈 83
5.1.5排汽閥座溫度分佈比較 86
5.2 氣冷引擎分析 139
5.2.1不同轉數之流場與流速 139
5.2.2不同轉數之熱傳係數 140
5.2.3不同截面之熱傳係數比較 142
5.2.4改善風扇罩設計提升流量 143
第六章 結論 167
6.1水冷引擎分析 167
6.2氣冷引擎分析 171
參考文獻 173
參考文獻 [1] Annand, W.J.D., “Heat Transfer in the Cylinders of a Reciprocating Internal Combustion Engine,” Proceedings of the Institution of Mechanical Engineers, Vol. 177, pp.973, 1963.
[2] Wu, H.W. and Chiu, C.P., “Computer Diagnosis System for Thermal Analysis of Engine Piston,” Wärme- und Stoffübertragung 24,203-210, 1989.
[3] Moechel, M. “Computational Fluid Dynamic (CFD) Analysis of a Six Cylinder Diesel Engine Cooling System with Experimental Correlations,” SAE Technical Paper 941081, 1994.
[4] Johan, Z., Moraes, A.C.M., Buell, J.C. and Ferencz, R.M., “In-Cylinder Cold Flow Simulation Using a Finite Element Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp. 3069–3080, 2001.
[5] Diviš, M. ,Tichánek, R., and Španiel, M. “Heat Transfer Analysis of a Diesel Engine Head,”Acta Polytechnica Vol. 43 No. 5,2003.
[6] 趙以賢, 畢小平, 王普凱 and 劉西俠, “車用內燃機冷卻系的流動與傳熱仿真,” 內燃機工程, Vol.24, No.4, pp.1-5, 2003
[7] Jun, X., Stephen, S. and Edwin, I., “Integration of 3D Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures,” SAE Technical Paper Series, No. 2003-01-3128, 2003.
[8] Deger, Y., Simperl B. and Jimenez L. P., “Coupled CFD-FE-Analysis for the Exhaust Manifold of a Diesel Engine,” ABAQUS Users'Conference, pp.199-208, 2004
[9] Wang, Q., “Numerical Analysis of Cooling Effects of a Cylinder Head Water Jacket,” Thesis of GIT 2005.
[10] Kessler, M.P. and Mendes, A.S., “Numerical Analysis of Flow at Water Jacket of an Internal Combustion Engine,” SAE Technical Paper Series, No. 2007-01-2711, 2007.
[11] Urip, E. and Yang, S. L., “An Efficient IC Engine Conjugate Heat Transfer Calculation For Cooling System Design,” SAE Technical Paper 2007-01-0147, 2007

[12] Mulemane, A. and Soman, R., “CFD Based Complete Engine Cooling Jacket Development and Analysis,” SAE Technical Paper 2007-01-4129, pp.1-10, 2007
[13] Fontanesi,S. and McAssey,E. V., “Experimental and Numerical Investigation of Conjugate Heat Transfer in a HSDI Diesel Engine Water Cooling Jacket,” SAE Technical Paper 2009-01-0703, 2009
[14] Hazrat,M. A., Masjuki, H. H., Kalam, M. A., Badruddin, I. A., Ramli, R. and Pang, S. C., “Steady State Analysis Of Coolant Temperature Distribution In A Spark Ignition Engine Cooling Jacket,” International Journal of Mechanical and Materials Engineering (IJMME), Vol.7, No.3, pp.243-250, 2012
[15] Fontanesi, S. and Giacopini,M., “Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine,” Applied Thermal Engineering, Vol.52, No.2, pp.293-303, 2013
[16] Paratwar, A. V. and Hulwan, D. B., “Surface Temperature Prediction and Thermal Analysis of Cylinder Head in Diesel Engine,” International Journal of Engineering Research and Applications (IJERA), Vol.3, No.4, pp.892-902, 2013
[17] Patil, M., Pise, A., and Gokhale, N., “Simulation of Conjugate Heat Transfer (CHT) Between Engine Head and Cooling Medium of Diesel Engine” SAE Technical Paper 2015-01-1662,2015
[18] 林煒喆, "水冷式機車引擎之三維熱液動分析," 國立成功大學碩士論文, 指導教授:張錦裕, 2015
[19] ANSYS Fluent, a Release 15.0 Documentation, ANSYS, Inc.2014.
[20] Chang, C. L., and Chou, S. F.,“Analysis of Cooling Effect on Irregular Fins of Engines,” International 83 ASME Summer Conference, Modeling and Simulation, 1983.
[21] Li, C. H., “Thermal and Mechanical Behavior of an L-4 Engine,” SAE paper 881149,1988.
[22] Wu, H. W., Chiu, C. P., “Study of Finned-Wall Cylinder Temperature in a Two Stroke Gasoline Engine-Comparison of Analytical and Experimental Results,” SAE Paper 871655, 1989.
[23] 李進修、王漢英, “汽機車引擎設計與分析技術”全華科技圖書股份有限公司,2005.
[24] Yoshida, M. ,Ishihara, S. ,Murakami, Y., and Yamamoto, M. , “Air-cooling Effect of fins on a Motocycle Engine,” JSME International Journal Vol.49, NO.3 pp. 869-875, 2006.
[25] 吳嘉晏, "氣冷及水冷式機車引擎之三維熱液動性能分析," 國立成功大學碩士論文, 指導教授:張錦裕, 2009
[26] Abaqus Theory Manual, Version 6.7, ABAQUS, Inc.Dassault Systemes, 2007.
[27] Yoshida, M. ,Ishihara, S. ,Murakami, Y., Yamamoto, M., and Teramoto, S. , “Improving Cylinder Cooling Using Tapered Fins and Baffle Plates between Fins in Air-Cooled Engines,” SAE Technical Paper 2010-01-0323,2010
[28] Pulkit, A., Mayur ,S and Srinivasan, P. , “Heat Transfer Simulation by CFD from Fins of an Air Cooled Motorcycle Engine under Varying Climatic Conditions, ”Proceedings of the World Congress on Engineering 2011 Vol III WCE 2011, 2011
[29] Raj ,A.K., Janardhana, G.R., Amarendar , G.R., “Heat Transfer Analysis In The Cylinder Head Of A Four-Stroke Si Engine,” International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 5, May – 2013, ISSN: 2278-0181,2013
[30] Shinde, S.C., Shinde, S., Nitin, G., “Numerical And Experimental Analysis Of Heat Transfer Through Various Types Of Fin Profiles By Forced Convection,” International Journal of Engineering Research & Technology (IJERT) Vol. 2 Issue 7, July – 2013, ISSN: 2278-0181,2013
[31] Federico, B., Stefania, F., Claudio, F.,and Giulio, G., “Definition of a CFD Methodology to Evaluate the Cylinder Temperature Distribution in Two-Stroke Air Cooled Engines,” Energy Procedia 81,2015-765-744,2015
[32] StarCCM+ v8 User Manual,CD-Adapco,2013
[33] ANSYS Fluent, a Release 17.2 Documentation, ANSYS, Inc.2016.
[34] Kolmogorov, A. N., "The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers," Dokl. Akad. Nauk. SSSR 30, pp.299-303, 1941
[35] Launder, B. E. and Spalding,D. B., "The Numerical Computation of Turbulent Flows," Imperial College of Science and Technology, 1973
[36] "LKF5水冷式引擎溫度量測報告," 光陽公司研究報告, 2014
[37] 吳明勳, "燃燒室設計與燃燒分析方法研究," 光陽公司研究報告, 2015
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-06-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-06-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw