進階搜尋


下載電子全文  
系統識別號 U0026-1906201210535600
論文名稱(中文) 週期性排列結構應用於超穎材料中的模擬研究
論文名稱(英文) Application and Simulation of Metamaterials Based on Periodic Structures
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 成柏翰
研究生(英文) Bo-Han Cheng
電子信箱 l78981107@mail.ncku.edu.tw
學號 l78981107
學位類別 博士
語文別 英文
論文頁數 78頁
口試委員 口試委員-蔡定平
口試委員-魏培坤
口試委員-陳瑞琳
口試委員-江海邦
指導教授-藍永強
中文關鍵字 布拉格震盪  類表面電漿波  陣列波導  多層漁網結構  積體光學  光學共振腔  濾波器  顯微鏡學  解析  非勻向性光學材料  超穎材料 
英文關鍵字 Bloch oscillations  Surface plasmon-like mode  Waveguide arrays  Multi-layered fishnet structure  integrated optics  optical resonators  resonator filter  Microscopy  Resolution  Anisotropic optical materials  Metamaterial 
學科別分類
中文摘要 本文主要是使用基於有限時域差分法(Finite-Difference Time-Domain)所開發的軟體 MEEP模擬並理論分析我們所設計的五種元件。所設計的元件均由週期性或類週期性的組件所構成。
首先,在我們所設計的三種一維類週期性系統中(1. 挖有次波長孔洞的完美導體金屬板所構成的陣列波導, 2. 多層漁網結構(Fishnet structure)所構成的多層波導, 3. 金屬-介電質-金屬單元所構成的波導系統),我們觀察到在微波頻段中因為激發類表面電漿波以及近紅外光頻段因為激發起表面電漿波的光布拉格震盪(Bloch oscillation)現象。在該系統中,我們進一步利用漢米頓光學(Hamiltonian optics optics)預測入射光在該系統中光的運動軌跡。
接著,我們藉由光相位補償的方法設計出包覆在金屬圓盤共振腔周圍的多層膜結構,用來克服表面電漿子波在彎曲介面上的散射損耗(Scattering loss),利用該共振腔結構,設計出能夠在介電質波導與金屬圓盤共振腔間耦合傳遞的表面電漿子(Plasmonic)光學版本的光濾波器(Filter)以及耦合器(Coupler)。
最後,利用兩種具有不同色散曲線的金屬薄膜/介電質交替排列結構,基於該材料的等效非勻向特性,我們設計出的混合型超解析透鏡組不僅可以突破光繞射極(optical diffraction limit),亦可以將描述該細微結構的高階空間訊號(High spatial frequency)傳遞至遠場處。
英文摘要 In this thesis, the Finite-Difference Time-Domain program MEEP is used in our simulation. We theoretically propose five devices and proved it by FDTD simulation. All devices we investigated are composed of periodic or quasi-periodic structures.
First, in the quasi-periodic we designed (1. Waveguide arrays are composed of perforated perfect conductor layer and dielectric layer, 2. Multi-layered fishnet waveguide structure, 3. Composite metal-insulator-metal structure), we have observed the optical Bloch oscillation phenomena at microwave and near-infrared region. Furthermore, we also predict the ray trajectories using Hamiltonian optics when the incident wave is launched into these structures.
Next, the method of phase velocity compensation is used to design multi-layered dielectric cladding on the circumference of an Ag microdisk cavity. SP that is generated by the evanescent coupling of a waveguide mode is tightly confined to the microdisk with very little scattering loss. The proposed devices efficiently perform filter/coupler functions.
Finally, we have demonstrated a hybrid-superlens-hyperlens can be developed by employing two periodic metal-dielectric composites, the upper planar-superlens and the lower cylindrical-hyperlens, with different isofrequency dispersion curves. The proposed hybrid-superlens-hyperlens can not only resolve the subwavelength fine structures but also utilize its anisotropic feature to enhance and transfer the high spatial frequencies to the far field.
論文目次 論文口試合格證明 I
中文摘要 II
Abstract III
致謝 IV
Contents V
List of Figures VII
1-1. History review 1
1-2. Introduction of surface plasmon polaritons 6
1-2-1. Dispersion relation of metals 7
1-2-2. Dispersion relation of SPPs at the IM interface 9
1-2-3. Dispersion of IMI waveguide 12
1-2-4. Dispersion of MIM waveguide 14
1-3. Numerical Method 17
1-4. Thesis outline 22
1-5. References: 23
Chapter 2. Bloch Oscillations of Surface Plasmon-like Modes in Waveguide Arrays that Comprise Perforated Perfect Conductor Layers and Dielectric Layers 27
2-1. Introduction 27
2-2. Geometric model and simulation method 28
2-3. Hamiltonian optics 29
2-4. Results and discussion 30
2-5. Conclusions 35
2-6. References: 36
Chapter 3. Photonic Bloch Oscillations in Fishnet Waveguide Structure 39
3-1. Introduction 39
3-2. Geometric model and simulation 40
3-3. Hamiltonian optics 41
3-4. Results and discussion 42
3-5. Conclusions 46
3-6. References: 46
Chapter 4. Photonic bloch oscillations in CMIM waveguide structure 49
4-1. Introduction 49
4-2. Geometric model and simulation method 50
4-3. Hamiltonian optics 51
4-4. Results and discussion 52
4-5. Conclusion 55
4-6. References: 56
Chapter 5. Plasmonic microdisk resonator filters and couplers 58
5-1. Introduction 58
5-2. Geometric model and method of simulation 59
5-3. Design and effective index of bound optical mode 60
5-4. Results and discussion 61
5-5. Conclusions 65
5-6. References: 66
Chapter 6. Optical hybrid-superlens-hyperlens for superresolution imaging 68
6-1. Introduction 68
6-2. Geometric model and simulation method 69
6-3. Theory and Design method 70
6-4. Conclusions 75
6-5. References: 75
Publication List 78

參考文獻 1-5. References

[1.1] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[1.2] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 509 (1968).
[1.3] D. W. Ward, K. A. Nelson, and K. J. Webb, “On the physical of the negative index of refraction,” New J. Phys. 7, 213 (2005).
[1.4] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[1.5] J.B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191-202 (2004).
[1.6] J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[1.7] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 79–81 (2001).
[1.8] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 79–81 (2001).
[1.9] C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[1.10] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[1.11] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
[1.12] V. M. Shalaev, "Optical negative-index metamaterials," Nat. Phot. 1, 41-48 (2007).
[1.13] J. Valentine, S. Zhang, T. Zentgraf, E. U. Avila, D. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[1.14] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[1.15] U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[1.16] J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[1.17] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[1.18] N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328, 582–583 (2010).
[1.19] D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, G. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Metamaterials:micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22, 5053–5057 (2010).
[1.20] W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19, 12837–12842 (2011).
[1.21] N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2008).
[1.22] E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[1.23] N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Expr.18, 24140–24151 (2010).
[1.24] W. L. Barnes, A. Dereux and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[1.25] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998).
[1.26] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
[1.27] A. Otto, Z. Phys. 216, 398 (1968).
[1.28] E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).
[1.29] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Phol, Phys. Rev. Lett. 77, 1889 (1996).
[1.30] S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870-1872 (2003).
[1.31] K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express 13, 256-266 (2005).
[1.32] A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
[1.33] D. K. Gramotnev, and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[1.34] D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[1.35] K. Tanaka, and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[1.36] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
[1.37] Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[1.38] J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[1.39] P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express. 14, 13030-13042 (2006).
[1.40] Robin Buckley and Pierre Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007).
[1.41] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[1.42] A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, Second Edition , (Artech House, Boston, 2000).

2-6. References

[2.1] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
[2.2] A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[2.3] B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[2.4] X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006).
[2.5] X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[2.6] W. Lin, X. Zhou, G. P. Wang, and C. T. Chan, “Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays,” Appl. Phys. Lett. 91, 243113 (2007).
[2.7] A. R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Plasmonic Bloch oscillations in chirped metal-dielectric structures,” Appl. Phys. Lett. 94, 161105 (2009).
[2.8] J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004).
[2.9] F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt 7, S97-S101 (2005).
[2.10] F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[2.11] A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670-672 (2005).
[2.12] A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006).
[2.13] Y. C. Lan and R. L. Chern, "Surface plasmon-like modes on structured perfectly conducting surfaces," Opt. Express 14, 11339-11347 (2006).
[2.14] A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007).
[2.15] S. A. Maier and S. R. Andres, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88, 251120 (2006).
[2.16] S. A. Maier, S. R. Andres, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated Metal Wires,” Phys. Rev. Lett. 97, 176805 (2006).
[2.17] R. L. Chern and Y. C. Lan, “Collective modes in metallic photonic crystals with subwavelength grooves,” Phys. Rev. B 80, 033107 (2009).
[2.18] S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev. 3, 243-261 (2009).
[2.19] C. M. de Sterke, J. E. Sipe, and L. A. Weller-Brophy, “Electromagnetic Stark ladders in waveguide geometries,” Opt. Lett. 16, 1141-1143 (1991).
[2.20] T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752-4755 (1999).
[2.21] R. Morandotii, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756-4759 (1999).
[2.22] V. Agarwal, J. A. de Rio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[2.23] F. Bloch, “Über die quantenmechanik der elektronen in kristallgittern,” Z. Phys. 52, 555-600 (1928).
[2.24] G. Nenciu, “Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians,” Rev. Mod. Phys. 63, 91-127 (1991).
[2.25] J. A. Arnaud, Beam and Fiber Optics (Academic Press, New York, 1976).
[2.26] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687-702 (2010).
[2.27] L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103, 033902 (2009).
[2.28] J. Jung, L. Martín-Moreno, and F. J. García-Vidal, “Light transmission properties of holey metal films in the metamaterial limit: effective medium theory and subwavelength imaging,” New J. Phys. 11, 123013 (2009).
[2.29] R. L. Burden and J. D. Faires, Numerical Analysis 8th Ed. (Thomson Brooks/Cole, Belmont, CA, 2005).

3-6. References

[3.1] A. Kavokin, G. Malpuech, A. Di Carlo, P. Lugli, and F. Rossi, “Photonic Bloch oscillations in laterally confined Bragg mirrors,” Phys. Rev. B 61, 4413-4416 (2000).
[3.2] G. Malpuech, A. Kavokin, G. Panazarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[3.3] P. B. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E 65, 056616 (2002).
[3.4] R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical Analogue of Electronic Bloch Oscillations,”Phys. Rev. Lett. 91, 263902 (2003).
[3.5] M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener Tunneling of Light Waves in an Optical Superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[3.6] W. Lin and G. P. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[3.7] T. B. Wang, C. P. Yin, W. Y. Liang and H. Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197-4200 (2009).
[3.8] X. Kang and Z. Wang, “Optical Bloch oscillation and resonant Zener tunneling in one-dimensional quasi-period structures containing single negative materials,” Opt. Comm. 282, 355-359 (2009).
[3.9] F. Bloch, “Quantum mechanics of electrons in crystals,” Z. Phys. 52, 555-600 (1928).
[3.10] G. Nenciu, “Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective hamiltonians,” Rev. Mod. Phys. 63, 91-127 (1991).
[3.11] M. Beruete, M. Sorolla, and I. Campillo, “Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express 14, 5445-5455 (2006).
[3.12] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials con-sisting of 2D perforated metal-dielectric stacks,” Opt. Express 14, 6778-6787 (2006).
[3.13] T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006),
[3.14] G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536-11541 (2007).
[3.15] A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of Negative-Refractive-Index Response of Double-Fishnet Structures,” Phys. Rev. Lett. 101, 103902 (2008).
[3.16] A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Plasmonic metamaterials based on holey metallic films,” J. Phys.: Condens. Matter 20, 304215 (2008).
[3.17] N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three‐Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859-3865 (2008).
[3.18] J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. Nanostruct. Fund. Appl. 6, 96-101 (2008).
[3.19] K. B. Alici and E. Ozbay, “A planar metamaterial: Polarization independent fishnet structure,” Photon. Nanostruct. Fund. Appl. 6, 102-107 (2008).
[3.20] C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, “Light propagation in a fishnet metamaterial,” Phys. Rev. B 78, 155102 (2008).
[3.21] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature (London) 455, 376 -380 (2008).
[3.22] B. H. Cheng and Y. C. Lan, “Bloch Oscillations of Surface Plasmon-Like Modes in Waveguide Arrays That Comprise Perforated Perfect Conductor Layers and Dielectric Layers,” PLASMONICS 5, DOI: 10.1007/s11468-011-9221-8 (2011).
[3.23] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687-702 (2010).
[3.24] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, Oxford, 2007).
[3.25] J. A. Arnaud, Beam and Fiber Optics (Academic Press, New York, 1976).
[3.26] V. Agarwal, J. A. del Río, G. M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).

4-6. References

[4.1] Kavokin, G. Malpuech, A. Di Carlo, P. Lugli, and F. Rossi, “Photonic Bloch oscillations in laterally confined Bragg mirrors,” Phys. Rev. B 61, 4413-4416 (2000).
[4.2] G. Malpuech, A. Kavokin, G. Panazarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[4.3] P. B. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E 65, 056616 (2002).
[4.4] R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical Analogue of Electronic Bloch Oscillations,”Phys. Rev. Lett. 91, 263902 (2003).
[4.5] M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener Tunneling of Light Waves in an Optical Superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[4.6] W. Lin and G. P. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[4.7] T. B. Wang, C. P. Yin, W. Y. Liang and, H. Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197-4200 (2009).
[4.8] X. Kang and Z. Wang, “Optical Bloch oscillation and resonant Zener tunneling in one-dimensional quasi-period structures containing single negative materials,” Opt. Comm. 282, 355-359 (2009).
[4.9] A. R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Bloch oscillations in chirped layered structures with metamaterials,” Opt. Express 16(5), 3299-3304 (2008).
[4.10] B. H. Cheng and Y. C. Lan, “Bloch Oscillations of Surface Plasmon-Like Modes in Waveguide Arrays That Comprise Perforated Perfect Conductor Layers and Dielectric Layers,” PLASMONICS 6, DOI: 10.1007/s11468-011-9221-8 (2011).
[4.11] B. H. Cheng and Y. C. Lan, “Photonic Bloch Oscillations in Multi-layered Fishnet Strcture,” PLASMONICS 6, DOI: 10.1007/s11468-011-9296-2 (2011).
[4.12] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-829 (2003).
[4.13] K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[4.14] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
[4.15] J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
[4.16] P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006).
[4.17] Robin Buckley and Pierre Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007).
[4.18] Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[4.19] S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
[4.20] P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[4.21] Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational Plasmon Optics,” http://arxiv.org/abs/1003.1326.
[4.22] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687-702 (2010).
[4.23] B. Wang and G. P. Wang, "Plasmon bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[4.24] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, Oxford, 2007).
[4.25] L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
[4.26] J. A. Arnaud, Beam and Fiber Optics (Academic Press, New York, 1976).

5-6. References

[5.1] T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[5.2] S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
[5.3] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). 
[5.4] D. F. P. Pile, and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[5.5] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). 
[5.6] A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[5.7] X. S. Lin, J. H. Yan, L. J. Wu, and S. Lan, “High transmission contrast for single resonator based all-optical diodes with pump-assisting,” Opt. Express 16, 20949–20954 (2008).
[5.8] C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[5.9] J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009).
[5.10] S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937 (2006).
[5.11] P. H. Lee and Y. C. Lan, “Plasmonic waveguide filters based on tunneling and cavity effects,” Plasmonics 5, 417–422 (2010).
[5.12] G. Wang, H. Lu, X. Liu, D. Mao and L. Duang, “Tunable miulti-channel wavelength demultiplexer based on MIM Plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513-3518 (2011).
[5.13] B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[5.14] H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded Plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011).
[5.15] J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[5.16] V. M. Shalaev, “Physics. Transforming light,” Science 322, 384–386 (2008).
[5.17] Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010).
[5.18] P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno and F. J. Garcia-Vidal, “Transformation Optics for Plasmonics,” Nano Lett. 10, 1985–1990 (2010).
[5.19] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[5.20] J. M. Choi, R. K. Lee, and A. Yariv, “Ring fiber resonators based on fused-fiber grating add-drop filters: application to resonator coupling,” Opt. Lett. 27, 1598–1600 (2002).
[5.21] V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritions,” Nano Lett. 7, 880–884 (2007).
[5.22] A. Yariv, “Universal relations for coupling of optical power between microresonator and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).

6-5. References

[6.1] E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikr. Anat. 9, 413–468 (1873).
[6.2] D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett. 77, 1413–1415 (2000). 
[6.3] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39, 982–983 (2000). 
[6.4] W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78, 685–687 (2001). 
[6.5] T. C. Chu, D. P. Tsai, and W. C. Liu, “Readout contrast beyond diffraction limit by a slab of random nanostructures,” Opt. Express 15, 12-23 (2007). 
[6.6] K. P. Chiu, K. F. Kai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16, 13885–13892 (2008).
[6.7] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[6.8] D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[6.9] B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[6.10] A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[6.11] W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).
[6.12] D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[6.13] J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express 17, 22380–22385 (2009).
[6.14] A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Letts. 95, 267407 (2005).
[6.15] X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[6.16] Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit.” Opt. Express 14, 8247–8256 (2006).
[6.17] H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[6.18] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[6.19] S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009).
[6.20] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
[6.21] David Smith and Philip Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18, 111–115 (1979).
[6.22] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-06-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-06-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw