進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1903201214163800
論文名稱(中文) 金屬鍵結法應用在III-V族LED及其光學特性之研究
論文名稱(英文) Metal Bonding Method Applied in III-V LEDs and Study of Optical Properties
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 顏良吉
研究生(英文) Liang-Jyi Yan
學號 l7896115
學位類別 博士
語文別 英文
論文頁數 113頁
口試委員 指導教授-許進恭
召集委員-張守進
口試委員-賴韋志
口試委員-張允崇
口試委員-龔志榮
口試委員-許世弘
口試委員-張智松
中文關鍵字 金屬鍵結  發光二極體  光伏特  偏振比 
英文關鍵字 Metal bonding  Light Emitting Diodes  photovoltaic  polarization ratio 
學科別分類
中文摘要 於本論文以銦金屬鍵結法應用在發光二極體(Light Emitting Diodes; LEDs)製程上,並成功使於紅光AlGaInP Vertical LEDs以及藍綠光InGaN Vertical LEDs製程中,而且我們不只探討其元件之光電特性,也研究其操作在光伏特模式(photovoltaic mode)下之情形,而且針對InGaN LEDs也研究其偏振狀態(polarization state),並利用光學薄膜方法,設計出能增加偏振比(polarization ratio)之膜層結構,期待在實用上有所幫助。
有別於傳統紅光AlGaInP Vertical LEDs,以金屬有機氣相磊晶法成長在砷化鎵(GaAs)基板上,由於砷化鎵基板在可見光區有非常大的吸收(absorption),所以我們將砷化鎵基板用溼蝕刻法(wet etching)移除,再用銦金屬結合法將矽基板與磊晶片上之反射層互相黏貼,而反射層則採用銀金屬(Ag)搭配二氧化矽(SiO2)薄膜與ITO(indium tin oxide)導電膜作成全方向反射層其反射率可達90%以上,可有效解決砷化鎵基板之吸收問題,而對於,出光效率(extraction efficiency)的提升可藉由表面週期性的結構,而獲得改善。當元件操作在光伏特模式下,並使用太陽光模擬器在AM 1.5 (Air Mass 1.5)條件下,也由於有週期性結構可有效讓太陽光入射至元件的量子阱(MQW; multi quantum well),再加上全方向反射層亦將光線再反射至MQW,所以此元件紅光AlGaInP Vertical LEDs可測得填充因子(fill factor)約83%以及光電轉換效率約4.67%。
而傳統InGaN LEDs,也是以金屬有機氣相磊晶法成長在藍寶石(sapphire)基板上,由於藍寶石基板為絕緣體,所以為水平電極方式且其熱阻(thermal impedance)和矽基板或砷化鎵等比較相對高出許多,所以本研究利用銦金屬結合法將矽基板和磊晶片上之反射層互相黏貼,而反射層則採用鋁銀金屬(Al/Ag) 全方向反射層其回火後反射率可達85%以上,而又可以形成歐姆接觸(Ohmic contact),再使用KrF (wavelength 248 nm) Excimer Laser,將藍寶石基板移除,並於N-face n-GaN表面作溼蝕刻粗化,以提高出光效率,本研究藉由XPS (X-ray photoelectron spectroscopy)與SEM量測,並針對N-face n-GaN之表面狀態作一番探討,以形成良好之歐姆接觸(Ohmic contact),也藉由TLM(transmission line model)求得面阻抗(sheet resistivity)和傳統之InGaN LEDs亦即Ga-face n-GaN上作一比較。同樣地,當元件操作在光伏特模式下,並使用太陽光模擬器在AM 1.5(air mass 1.5)條件下,也由於N-face n-GaN表面有Pyramidal粗化結構可有效讓太陽光入射至元件的量子阱,再加上全方向反射層亦將光線再反射至MQW有利於光線的被吸收以增加其光電流,所以此元件可測得填充因子(fill factor)約67.9%以及光電轉換效率約1.58%。
除此之外,我們對於傳統InGaN LEDs的偏振狀態作一番探討,由其在m-plane或a-plane方向有較佳之偏振狀態,即偏振比(r=ITE/ITM)較大,所以我們嘗試用光學薄膜方法,模擬設計出一組介電質薄膜加上金屬層,分別鍍在仍然用(0001)方向即c-plane成長之InGaN LEDs晶粒的藍寶石和p-GaN-ITO上面,而此waveguide-like結構,亦得到不錯之實驗結果,其偏振比從r = 1.398 (無偏振膜)提升至r = 2.174 (鍍上偏振膜),俾能在實用上有所幫助。
英文摘要 In this thesis, the application of indium metal to metal bonding processes has been shown to be suitable for the fabrication of AlGaInP light emitting diodes (LEDs) and GaN base LEDs. We investigated the electrical characteristics of these LEDs which also served as solar cells with photovoltaic modes. The polarization states of InGaN LEDs which were grown on c-plane (0001) sapphire substrates were studied, and the polarization ratio was also determined. In order to enhance the polarization ratio, we successfully designed and fabricated several sets of optimized optical thin films.
In direct contrast to conventional AlGaInP-based LEDs which were grown on (100) GaAs substrates by metal organic chemical deposition (MOCVD) method and caused a certain absorption in the visible spectrum region, we used a wet etching method to remove the GaAs substrate after the application of indium metal to the metal bonding process. Indium metal and a Si substrate were bonded with a SiO2–ITO–Ag omni directional reflector on an epi wafer using a metal to metal bonding technique. Since the reflectivity of omni directional SiO2–ITO–Ag is greater than 90%, it has the potential to compensate for the shortcoming of GaAs substrate absorption. To improve the light extraction efficiency, a periodic texture was applied to the (Al0.5Ga0.5)0.5In0.5P surface layer of AlGaInP–Si vertical LEDs by photolithography and the wet etching process. When AlGaInP–Si vertical LED devices were operated in photovoltaic mode, in which no bias was applied and measured under an air mass 1.5 condition, the typical efficiency and fill factor are around 4.67% and 83%, respectively.
The MOCVD method is usually used to grow epitaxial layers on (0001) c-plane sapphire substrates for conventional InGaN-based LEDs. Since sapphire substrate is an insulator, the electro pads have to be fabricated on the same side, i.e., the horizontal type. Furthermore, the thermal impedance is relatively higher than that of Si or GaAs. The indium metal and Si substrate were therefore bonded with an Al/Ag omni directional reflector on epi wafer using a metal to metal bonding technique. The reflectivity of the Al/Ag reflector could exceed 85% after annealing since Al/Ag metals functioned not only as p-Ohmic contacts, but also as omni direction reflectors. An excimer laser was used to remove sapphire substrate from this structure. Then, a wet etching process was applied to roughen the surface of the N-face n-GaN in order to improve extraction efficiency. Further study of the surface states and morphology of the N-face n-GaN was completed using X-ray photoelectron spectroscopy (XPS) SEM. To compare the sheet resistance (ρc) values of N-face n-GaN and Ga-face n-GaN, a transmission line model (TLM) was used in order to form a good Ohmic contact for InGaN-based vertical LEDs. Similarly, when InGaN-base vertical LED devices were operated in photovoltaic mode in which no bias was applied and measurements were taken under an air mass 1.5 condition, the typical efficiency and fill factor are around 1.58% and 67.9% respectively. That is because the surface of N-face n-GaN has many pyramidal structures and allows light incident to MQW efficiently. The reflector also plays a role in reflecting the light to MQW.
Besides, the polarization states regarding conventional InGaN-based LEDs are also discussed. There is a better polarization ratio (ITE-max/ ITM-max) for the directions of the m-plane and a-plane, so we attempt to use the optical thin film method to design and fabricate edge emitting c-plane GaN/sapphire based LEDs which are sandwiched between two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces. Based on the measurements obtained, this waveguide like structure can enhance the polarization ratio from 1.398 to 2.174 at a wavelength of 460 nm, and is considered to be suitable for common applications.
論文目次 摘要.......................................................................................................................................I
Abstract................................................................................................................................III
致謝................................................................................................................................... VI
Contents.............................................................................................................................VII
Table Captions....................................................................................................................IX
Figure Captions...................................................................................................................XI
CHAPTER 1 Introduction......................................................................................................1
1.1 Background of Group III-V LEDs...........................................................................1
1.2 Metal Bonding Method of III-V LEDs:...................................................................2
References in Chapter 1.......................................................................................................10
CHAPTER 2 Indium Metal Applied to AlGaInP Vertical LEDs........................................12
2.1 Introduction ...........................................................................................................12
2.2 Fabrication of AlGaInP Vertical LEDs Using Bonding Process…………….…..13
2.3 Characterization of AlGaInP Vertical LEDs………………………………….….18
References in Chapter 2…………………………………………………………….……..23
CHAPTER 3 Indium Metal Applied to InGaN Vertical LEDs............................................25
3.1 Introduction............................................................................................................25
3.2 Fabrication of InGaN Vertical LEDs Using Bonding Process………………..….26
3.3 Characterization of InGaN Vertical LEDs………………. ……………….……..42
References in Chapter 3………………………………………………………….………..45
CHAPTER 4 Study of Photovoltaic Mode on AlGaInP and InGaN Vertical LEDs………………………………………………………………………………….……47
4.1 Investigation of Photovoltaic Mode on AlGaInP Vertical LEDs…………….…..47
4.2 Investigation of Photovoltaic Mode on InGaN Vertical LEDs……………….….54
4.3 Summary…………………………………………………………………………59
References in Chapter 4……………………………………………………………...……60

CHAPTER 5 Polarization States Study of InGaN LEDs Grown on c-plane (0001) Sapphire Substrate……………………………………………………………………………..…….62
5.1 Introduction……………………………………………………………………....62
5.2 Design and Fabrication……………………………………………………..…….62
5.3 Measurement and Discussions…………………………………………….……..72
5.4 Summary…………………………………………………………………………81
References in chapter 5……………………………………………………………………82
CHAPTER 6 Conclusions and Future Works……………………………………………..84
6.1 Conclusions…………………………………………………………………...….84
6.2 Future Works………………………………………………………………..……87
Appendix A………………………………………………………………………..………89
References in Appendix A………………………………………………………..……….99
Appendix B………………………………………………………………….……………101
References in Appendix B…………………………………………………….………….111
Publication List…………………………………………………………………………...113

參考文獻 CHAPTER 1
[1] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson and M. G. Craford, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555-620 nm spectra region using a thick GaP window layer”, Appl. Phys. Lett., vol. 61, pp. 1045-1047 (1992)
[2] F. A. Kish, F. M. Sterakna, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowaski, M. J. Penansky, J. G. Yu, R. M.Fletcher, D. A. Steigerwald and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlGa)InP/GaP light-emitting diodes”, Appl. Phys. Lett., vol. 64, pp. 2839-2841 (1994)
[3] F. A. Kish, D. A. Vanderwater, M. J. Penansky, M. J. Loudowise, S. G. Hummel and S. J. Rosner, “Low-resistance ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., vol. 67, pp. 2060-2062 (1995)
[4] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowerg, P. S. Martin, S. Subramaya, W. Gotz, N. F. Gardner, R. S. Kern and S.A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett., vol. 78, pp. 3379-3381 (2001)
[5] S. Nakamura, T. Mukai, M. Senoh and Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., vol. 31, pp. L139-L142 (1992)
[6] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys. Vol. 34, pp. L1332-L1335 (1995)
[7] Sadao Adachi, “Properties of Aluminum Gallium Arsenide’, EMIS Datareview Series No. 7 (1993)
[8] Hugh Baker et. al., “ASM Handbook , Volume 3, Alloy Phase Diagrams”, pp. 2.70, pp. 2.76, 福懋出版社 (1993)
[9] J. Van Deelen, P. Mulder, G.J. Bauhuis, A.T.J. van Niftrik, E.J. Haver Kamp, J.J.
Schermer and P.K. Larsen, “Study of Wet Chemical Etching of InP films Using
Hydrochloric Acid” Journal of the Electrochemical Society, vol. 153, pp. C442-C448 (2006)
[10] Y.J. Lee, H.C. Kuo, S.C.Wang, T.C. Hsu, M.H. Hsieh, M.J. Jou and B.J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening”, IEEE Photonics Technology Letters, vol. 17, No.11 (2005)
[11] Lung-Chien Chen, Yin Lin Huang, “High reliability GaN-based light-emitting diodes with photo-enhanced wet etching”, Solid-State Electronics, vol. 48, issue 7, pp. 1239-1242 (2004)
[12] M. R. Krames et. al., “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency”, Appl. Phys. Lett., vol., 75, pp. 2365 (1999)

Chapter 2
[1] E. F. Schubert, “Light-emitting diodes”, pp.150-160 (Second Edition, Cambridge University Press, Cambridge, U.K., 2006).
[2] S.O.Kasap,”Optoelectronics and Photonics: Principles and Practices”, pp.269-271 (Prentice-Hall Inc., New Jersey, USA, 2001)
[3] Y.J. Lee, H.C. Kuo, S.C.Wang, T.C. Hsu, M.H. Hsieh, M.J. Jou and B.J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening”, IEEE Photonics Technology Letters, vol.17 No.11, 2289 (2005).
[4] F. A. Kish, F. M. Sterakna, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowaski, M. J. Penansky, J. G. Yu, R. M.Fletcher, D. A. Steigerwald and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlGa)InP/GaP light-emitting diodes”, Appl. Phys. Lett., vol. 64, pp. 2839-2841 (1994)
[5] F. A. Kish, D. A. Vanderwater, M. J. Penansky, M. J. Loudowise, S. G. Hummel and S. J. Rosner, “Low-resistance ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., vol. 67, pp. 2060-2062 (1995)
[6] J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei and W.C.Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface”, Appl. Phys. Lett., vol. 88, no. 11, pp. 3505 (2006) and references therein.
7. Huang; Kuo-Hsin, U.S. patent No. 5359209 (1994).
[8] Liang-Jyi Yan, J. K. Sheu, Wei-Chih Wen, Tien-Fu Liao, Ming-Jong Tsai, and Chih-Sung Chang, “Improved Light Extraction Efficiency in AlGaInP Light-Emitting Diodes by Applying a Periodic Texture on the Surface”, IEEE Photonics Technology Letters, vol. 20, no. 20, pp. 1724-1726 (2008)
[9] I. Schnitzer, E. Yablonovitch, C. Caneau,; T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes”, Appl. Phys. Lett., vol. 63, no. 16, pp. 2174-2176 (1993)
[10] Ray-Hua Horng, Shao-Hua Huang, Dong-Sing Wuu and Yann-Zyh Jiang, “Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding”, Jpn. J. Appl. Phys., vol. 43, pp. 2510-2514 (2004)

CHAPTER 3
[1] Dong-Sing Wuu, Shun-Cheng Hsu, Shao-Hua Huang, Chia-Cheng Wu, Chia-En Lee and Ray-Hua Horng, “GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques”, Jpn. J. Appl. Phys., vol. 43, pp. 5239 (2004).
[2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., vol. 84, pp. 855 (2004).
[3] Ko-Tao Lee, Yeeu-Chang Lee, Sheng-Han Tu, Ching-Liang Lin, Po-Hen Chen, Cheng-Yi Liu, and Jeng-Yang Chang, “Mechanism Underlying Damage Induced in Gallium Nitride Epilayer during Laser Lift-Off Process”, Jpn. J. Appl. Phys., vol. 47, pp. 930 (2008).
[4] E. Sarigiannidou, E. Monroy, N. Gogneau, G. Radtke, P. Bayle-Guillemaud, E. Bellet-Amalric, B. Daudin and J. L. Rouvi`ere, “Comparison of the structural quality in Ga-face and N-face polarity GaN/AlN multiple-quantum-well structures”, Semicond. Sci. Technol., vol. 21, pp. 612 (2006).
[5] Ming-Lun Lee, Jinn-Kong Sheu and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN”, Appl. Phys. Lett., vol. 91, pp. 182106 (2007) and references therein.
[6] T. Jang, S. N. Lee, O. H. Nam, and Y. Park, “Investigation of Pd/Ti/Al and Ti/Al Ohmic contact materials on Ga-face and N-face surfaces of n-type GaN”, Appl. Phys. Lett., vol. 88, pp. 193505 (2006) and references therein.
[7] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN”, Appl. Phys. Lett., vol. 75, pp. 4130 (1999).
[8] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang and I. Adesida, “Schottky barrier properties of various metals on n-type GaN”, Semicond. Sci. Technol., vol. 11, pp. 1464 (1996).
[9] Uwe Karrer, Oliver Ambacher, and Martin Stutzmann, “Influence of crystal polarity on the properties of Pt/GaN Schottky diodes”, Appl. Phys. Lett., vol. 77, pp. 2012 (2000).
[10] Ho Won Jang, Jung-Hee Lee, and Jong-Lam Lee, “Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition”, Appl. Phys. Lett., vol. 80, pp. 3955 (2002).
[11] D. Gall, C.-S. Shin, R. T. Haasch, I. Petrov, and J. E. Greene, “Band gap in epitaxial NaCl-structure CrN(001) layers”, J. Appl. Phys., vol. 91, pp. 5882 (2002).
[12] Tosja K. Zywietz, Jo¨rg Neugebauer, and Matthias Scheffler, “The adsorption of oxygen at GaN surfaces”, Appl. Phys. Lett., vol. 74, no. 12, pp. 3658-3660 (1999).
[13] M. Eickhoff, R. Neuberger, G. Steinhoff , O. Ambacher, G. Muller, and M. Stutzmann, “Wetting Behaviour of GaN Surfaces with Ga- or N-Face Polarity”, phys. stat. sol., vol. 228, issue 2, pp. 519–522 (2001)
[14] Yan Gao, Tetsuo Fujii, Rajat Sharma, Kenji Fujito, Steven P. Dennbars, Shuji Nakamura and Evelyn L. Hu, “Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching”, Jpn. J. Appl. Phys., vol. 43 , pp. L 637–L 639 (2004).
[15] Ja-Yeon Kim, Seok-In Na, Ga-Young Ha, Min-Ki Kwon, Il-Kyu Park, Jae-Hong Lim, Seong-Ju Parka, Min-Ho Kim, Dongyoul Choi, and Kyeongik Min, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes”, Appl. Phys. Lett., vol. 88, no. 04, pp. 3507-3509 (2006) .

CHAPTER 4
[1] S. M. Sze, “Physics of Semiconductor Device”, 2nd ed. pp. 791-820 (Central Book Company 1983),
[2] E. F. Schubert, Light-Emitting Diodes, 2nd ed., pp. 150–160, Cambridge University Press, Cambridge, U.K. (2006).
[3] S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices”, pp. 269–271, Prentice-Hall, Englewood Cliffs, N.J. (2001).
[4] Y.J. Lee, H.C. Kuo, S.C.Wang, T.C. Hsu, M.H. Hsieh, M.J. Jou and B.J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening”, IEEE Photonics Technology Letters, vol.17 no.11, pp. 2289-2291 (2005).
[5] F. A. Kish, F. M. Sterakna, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowaski, M. J. Penansky, J. G. Yu, R. M.Fletcher, D. A. Steigerwald and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlGa)InP/GaP light-emitting diodes”, Appl. Phys. Lett., vol. 64, pp. 2839-2841 (1994)
[6] F. A. Kish, D. A. Vanderwater, M. J. Penansky, M. J. Loudowise, S. G. Hummel and S. J. Rosner, “Low-resistance ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., vol. 67, pp. 2060-2062 (1995)
[7] J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei and W.C.Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface”, Appl. Phys. Lett., vol. 88, 113505 (2006) and references therein.
[8] J. J. Schermer, P. Mulder, G. J. Bauhuis, P. K. Larsen, G. Oomen and E. Bongers, Prog. “Thin-film GaAs epitaxial lift-off solar cells for space applications”, Photovolt: Res. Appl., vol.13, 587 (2005).
[9] D. J. H. Lambert, M. M. Wong, U. Chowdhury, C.Collins, T. Li, H. K. Kwon, B.S. Shelton, T. G. Zhu, J.C. Campbell, and R.D. Dupuis, “Back illuminated AlGaN solar-blind photodetectors”, Appl. Phys. Lett., vol. 77, 1900 (2000).
[10] Liang-Jyi Yan, Chih-Chiao Yang, Ming-Lun Lee, Shang-Ju Tu, Chih-Sung Chang and Jinn-Kong Sheua, “AlGaInP/GaP Heterostructures Bonded with Si Substrate to Serve as Solar Cells and Light Emitting Diodes”, Journal of the Electrochemical Society, vol. 157, pp. H452-H454 (2010)
[11] Robert W. Boyd, “Radiometry and the Detection of Optical Radiation”, pp. 109, John Wiley & Sons, Inc (1982).
[12] D. P. Bow, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thomton, B. S. Krusor, R. D. Bringans, and D. F. Welch, “Strained GaxIn1-xP/(AIGa)0.5In0.5P Heterostructures and Quantum-Well Laser Diodes”, IEEE Journal of Quantum Electronics, vol. 30, no. 2, pp. 593-607 (1994)

CHAPTER 5
[1] H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10 0) and (10 ) planes”, Appl. Phys. Lett., vol. 92, no. 09, pp. 1105 (2008).
[2] H. Tsujimura, S. Nakagawa, K. Okamoto, and H. Ohta, “Characteristics of Polarized Electroluminescence from m-plane InGaN-based Light Emitting Diodes” Jpn. J. Appl. Phys., Part 2 46, pp. L1010-L1012 (2007).
[3] H. Masui, N. Fellows, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of light emission from sidewalls of primary-color light-emitting diodes”, Semicond. Sci. Technol., vol. 23, no. 072001 (2008).
[4] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Linearly polarized emission from GaInN lightemitting diodes with polarization-enhancing reflector”, Optics Express, vol. 15, no. 18, pp. 11213-11218(2007).
[5] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates”, Appl. Phys. Lett., vol. 91, no. 05, pp. 1117 (2007).
[6] S. C. Lee and J. I. Chen, “New metal-clad fiber polarizer”, Appl. Opt., vol. 29, pp. 2667 (1990).
[7] J. I. Chen and S. C. Chang, “Fiber full-polarization-state controller”, Appl. Opt., vol. 32, pp. 298 (1993).
[8] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi,” Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.23Ga0.77N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Letter, vol.22, pp. 460-462 (2001).
[9] M. L. Lee, J. K. Sheu, and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN”, Appl. Phys. Lett., vol. 91, no. 18, pp. 2106 (2007).
[10] D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, New York, pp. 479–489 (2003).
[11] C. H. Chiu, Y. Peichen, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S.
H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection
employing disordered GaN nanopillars”, Optics Express, vol. 16, no. 12, pp. 8748-8754 (2008).
[12] H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura, and S. P. Denbaars, “Polarized Light Emission from Nonpolar InGaN Light-Emitting Diodes Grown on a Bulk m-Plane GaN Substrate”, Jpn. J. Appl. Phys., vol. 44, pp. L1329 (2005).
[13] S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota and H. Ohta, “Temperature dependence of polarized electroluminescence from nonpolar m-plane InGaN-based light emitting diodes”, Appl. Phys. Lett., vol. 91, no. 17, pp. 1110 (2007).
[14] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes”, Appl. Phys. Lett., vol. 86, no. 11, pp. 1101 (2005).
[15] L. J. Yan, J. K. Sheu, F. W. Huang and M. L. Lee, “Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors”, J. Appl. Phys., vol. 108, no. 113102 (2010)

Appendix A
[1] Mandy M. Y. Leung, Aleksandra B. Djuriŝić, and E. Herbert Li,” Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. vol. 84, no. 6312 (1998)
[2] 李正中,”薄膜光學與鍍膜技術”,pp.180-190,第五版,藝軒出版社 (2006)
[3] H. A. Macleod, “Thin-Film Optical Filters”, 2nd edition, Adam Hilger Ltd, Bristol, pp. 261
[4]黃忠偉,胡能忠,“光學系統模擬設計”, pp.110-138, 五南圖書出版社 (2006)
[5] “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Applied Optics, vol. 35, issue 18, pp. 3270-3274 (1996)
[6] Lihong Wang, Steven L. Jacques and Liqiong Zheng, “MCML (Monte Carlo modeling) of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine,Volume 47, Issue 2, Pages 131-146, July 1995
[7] Henrik Wann Jensen, James Arvo, Phil Dutre, Alexander Keller, Henrik Wann Jensen, Art Owen and Matt Pharr, “Monte Carlo Ray Tracing,” Siggraph 2003 Course 44, July 29, 2003
[8] Yuan Qin; Xia Guo; Wen Jing Jiang; Rong Fang; Guang Di Shen, “Light extraction analysis of AlGaInP based LED with surface texture,” Communication and Photonics Conference and Exhibition (ACP), 2009 Asia, pp-1-7, Feb. 2010.
[9] Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes”, Appl. Phys. Lett. vol. 82, pp. 2221 (2003)
[10] C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate”, J. Appl. Phys. vol. 101, no. 033113 (2007)
[11] Tsung-Xian Lee, Chao-Ying Lin, Shih-Hsin Ma and Ching-Cherng Sun, “Analysis of position-dependent light extraction of GaN-based LEDs”, Optics Express, vol. 13, no. 11, pp. 4175-4179 (2005)
[12] Tsung-Xian Lee, Ko-Fon Gao, Wei-Ting Chien and Ching-Cherng Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate”, Optics Express, vol. 15, no. 11, pp. 6670-6676 (2007)

Appendix B
[1] H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Polarized Light Emission from Nonpolar InGaN Light-Emitting Diodes Grown on a Bulk m-Plane GaN Substrate”, Jpn. J. Appl. Phys. vol. 44, no. 43, pp. L 1329–L 1332 (2005)
[2] H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10 0) and (10 ) planes”. Appl. Phys. Lett., vol. 92, no. 09, pp. 1105 (2008)
[3] Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, E. Fred Schubert, and Jaehee Cho, “Linearly polarized emission from GaInN light emitting diodes with polarization-enhancing reflector”, Optics Express, vol.15, no. 11, pp. 213 (2007)
[4] Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, E. Fred Schubert, and Jaehee Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates”, Appl. Phys. Lett. vol. 91, no.05, pp. 1117 (2007)
[5] S. C. Lee and Jen-i Chen, “New metal-clad fiber polarizer”, Applied Optics, vol. 29, pp. 18 – 20, June 1990
[6] Kuang-Yu Hsu, Ssu-Pin Ma, Kun-Fa Chen, Shiao-Min Tseng, “Surface-Polariton Fiber Polarizer”, Jpn. Appl. Phys. vol. 36, pp. L488-L490 (1997)
[7] Takanori Nakano, Kazutaka Baba, and Mitsunobu Miyagi, “Insertion loss and extinction ratio of a surface plasmon-polariton polarizer: theoretical analysis”, J. Opt. Soc. Am. B 11, pp. 2030-2035 (1994)
[8] Yu. N. Konoplev, Yu. A. Mamaev and A. A. Turkin, “Optimization of the structure of an optical fiber polarizer with a metal film at a wavelength of 980 nm”, Optics and Spectroscopy, vol. 105, no. 1, 128-133 (2008)
[9] F. Abeles and T. Lopez-Rios, “Surface Polaritons at Metal Surfaces and Interfaces”, North-Holland Publishing Company, New York, Oxford, pp. 239-272 (1982)
[10] Michael N. Zervas and Ian P. Giles, “Performance of surface-plasma-wave fiber-optic polarizers”, Optics Letters, vol. 15, No.9, pp. 513-515 (1990)

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-03-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw