進階搜尋


下載電子全文  
系統識別號 U0026-1901201702260000
論文名稱(中文) 研究CRISPR/Cas在化膿性鏈球菌的致病能力
論文名稱(英文) Study the effects of CRISPR/Cas in the pathogenesis of Streptococcus pyogenes
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 105
學期 1
出版年 105
研究生(中文) 彭嘉賓
研究生(英文) Alvin Andryan Phielip
學號 T36035022
學位類別 碩士
語文別 英文
論文頁數 97頁
口試委員 口試委員-蔡佩珍
口試委員-江倪全
指導教授-吳俊忠
中文關鍵字 化膿性鏈球菌  CRISPR/Cas系統  cas突變株  致病能力 
英文關鍵字 S. pyogenes  CRISPR/Cas systems  cas mutants  pathogenesis 
學科別分類
中文摘要 常間回文重複序列叢集/常間回文重複序列叢集關聯基因(CRISPR/Cas)是細菌的後天免疫系統,可抵禦侵入性的外來序列,如噬菌體和質體 。最近的研究顯示CRISPR/Cas也參與在不同細菌的毒力調控,包括空腸彎曲菌,嗜肺炎軍團桿菌,和新澤西弗朗西斯氏菌。化膿性鏈球菌是人類主要的致病菌,它帶有兩組CRISPR/Cas系統,包含CRISPR01和CRISPR02。CRISPR01在化膿性鏈球菌的存在率是100%,而CRISPR02是83.7%。本研究的目的是探討CRISPR/Cas系統在化膿性鏈球菌致病能力的影響。我在野生菌株A20,建構了CRISPR01 cas9,cas1,cas2,csn2及CRISPR02 cas3基因的突變株。建構cas基因突變株的方法是利用同源重組機制使cas基因被cat氯黴素抗藥基因盒置換掉,也用南方墨點法確認突變成功。不過在cas9,cas1,cas2,和csn2突變株中,下游基因表現量受到cat基因盒的影響有所改變。因此
,再利用cat基因盒在其後接上slo終止子建構新cas9,cas1,cas2,和csn2突變株。利用分析核酸及蛋白質水解能力,氧化環境及人全血的存活率來探討這些基因突變是否影響其致病能力。結果顯示四隻新的cas9,cas1,cas2,和csn2 突變株及cas3突變株的生長率與野生株類似。所有cas突變株的核酸及蛋白質水解能力無顯著改變。cas突變株在氧化環境與人全血的存活率也無顯著改變。綜合本研究,這些證據皆指出CRISPR/Cas系統之cas9,cas1,cas2,csn2,及 cas3基因可能不參與A20化膿性鏈球菌的致病能力。
英文摘要 Clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) systems were initially determined as bacterial adaptive immune system against invading mobile genetic elements, such as bacteriophages and plasmids. Recent studies revealed that CRISPR/Cas systems were also involved in virulence mechanisms among different species, including Campylobacter jejuni, Legionella pneumophila, and Francisella novicida. In Streptococcus pyogenes, two CRISPR/Cas systems were found with a high prevalence rate among the isolates, 100% for CRISPR01 and 83.7% for CRISPR02. The aim of this project was to determine the effect of CRISPR/Cas systems in the pathogenesis of S. pyogenes. Five cas gene mutants of S. pyogenes strain A20 including cas9, cas1, cas2, csn2 of CRISPR01, and cas3 of CRISPR02 were constructed by replacement with cat chloramphenicol resistance cassette and confirmed by Southern blot hybridization. However, the expression level of downstream genes in all CRISPR01 cas mutants was affected by the insertion of cat cassette. Thus, slo terminator was inserted downstream of cat cassette to create new cas9, cas1, cas2, and csn2 mutants. The DNase and protease activity and survival in oxidative environment and human whole blood were assessed to determine whether these cas genes contribute to the pathogenesis of S. pyogenes. Results demonstrated that growth rate of the new cas9, cas1, cas2, csn2 mutants and the cas3 mutant was similar to that of wild type strain. DNase and protease activity of all cas mutants were similar to that of wild type strain. Survival of all cas mutants in oxidative environment and human whole blood were also similar to that of wild type strain. Based on these results, we concluded that cas9, cas1, cas2, csn2, and cas3 genes of CRISPR/Cas systems did not involve in the pathogenesis of S. pyogenes A20.
論文目次 Abstract I
中文摘要 II
誌謝 III
Contents IV
Tables Contents VII
Figures Contents VIII
Appendix Contents IX
Abbreviations X
Chapter I. Introduction 1
1.1 Streptococcus pyogenes 1
1.1.1 Introduction of Streptococcus pyogenes 1
1.1.2 Epidemiology of Streptococcus pyogenes 1
1.1.3 Virulence factors 3
1.1.4 Survival in human blood 4
1.1.4.1 The importance of proteases and DNases 7
1.1.4.2 Resistance to oxidative stress 8
1.2 CRISPR/Cas system 10
1.2.1 Introduction of CRISPR/Cas system 10
1.2.2 Class 1 CRISPR/Cas systems 11
1.2.2.1 Type I CRISPR/Cas systems 11
1.2.2.2 Type III CRISPR/Cas systems 12
1.2.2.3 Type IV CRISPR/Cas systems 12
1.2.3 Class 2 CRISPR/Cas systems 13
1.2.3.1 Type II CRISPR/Cas systems 13
1.2.3.2 Type V CRISPR/Cas systems 14
1.2.3.3 Type VI CRISPR/Cas systems 14
1.2.4 Applications of CRISPR/Cas systems 14
1.2.4.1 Genome editing 14
1.2.4.2 Control of gene expression 15
1.2.4.3 Molecular typing 15
1.2.5 CRISPR/Cas systems in bacterial pathogenesis 16
1.2.6 CRISPR/Cas systems in S. pyogenes 17
Chapter II. Purpose 19
Chapter III. Materials and Methods 20
3.1 Materials 20
3.2 Bacterial strains and plasmids collection 20
3.3 Bacterial growth conditions and storage 20
3.4 Extraction of bacterial DNA 21
3.4.1 Extraction of E. coli plasmid DNA 21
3.4.2 Extraction of S. pyogenes genomic DNA 21
3.5 Molecular cloning 22
3.5.1 Polymerase Chain Reaction (PCR) 22
3.5.2 Agarose gel electrophoresis 22
3.5.3 DNA ligation 23
3.5.4 Preparation of E. coli competent cells 23
3.5.5 Transformation of E. coli 24
3.5.6 Electroporation of S. pyogenes 24
3.6 Southern blot hybridization 25
3.6.1 Probe preparation 25
3.6.2 Restriction enzyme digestion of chromosomal DNA 25
3.6.3 DNA breakage and transfer 25
3.6.4 Hybridization 26
3.6.5 Washing and detection 26
3.7 RNA handling 27
3.7.1 Extraction of S. pyogenes RNA 27
3.7.2 Reverse transcription PCR (RT-PCR) 28
3.8 Real-time RT-PCR 28
3.9 Growth curve 29
3.10 Protease activity test 29
3.11 DNase activity test 29
3.12 Oxidative survival 30
3.13 Human whole blood survival 30
3.14 Statistical analysis 31
Chapter IV. Results 32
4.1 Construction of cas mutants 32
4.2 Solution to the polar effect 34
4.3 Growth rate of A20 and the cas mutants 35
4.4 DNase activity of A20 and the cas mutants 36
4.5 Protease activity of A20 and the cas mutants 36
4.6 Oxidative survival of A20 and the cas mutants 37
4.7 Human whole blood survival of A20 and the cas mutants 39
Chapter V. Discussion 41
Chapter VI. References 45
Tables 65
Figures 68
Appendix 85
參考文獻 Amelung, S., Nerlich, A., Rohde, M., Spellerberg, B., Cole, J. N., Nizet, V., Chhatwal, G. S. & Talay, S. R. (2011). The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells. Cell Microbiol 13, 1200-1211.
Anantharaman, V., Makarova, K. S., Burroughs, A. M., Koonin, E. V. & Aravind, L. (2013). Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct 8, 15.
Aziz, R. K., Ismail, S. A., Park, H. W. & Kotb, M. (2004). Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. Mol Microbiol 54, 184-197.
Babior, B. M. (2004). NADPH oxidase. Curr Opin Immunol 16, 42-47.
Babu, M., Beloglazova, N., Flick, R., Graham, C., Skarina, T., Nocek, B., Gagarinova, A., Pogoutse, O., Brown, G., Binkowski, A., Phanse, S., Joachimiak, A., Koonin, E. V., Savchenko, A., Emili, A., Greenblatt, J., Edwards, A. M. & Yakunin, A. F. (2011). A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79, 484-502.
Barrangou, R. (2013). CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 4, 267-278.
Bastiat-Sempe, B., Love, J. F., Lomayesva, N. & Wessels, M. R. (2014). Streptolysin O and NAD-glycohydrolase prevent phagolysosome acidification and promote group A streptococcus survival in macrophages. MBio 5, e01690-01614.
Beall, B., Facklam, R., Hoenes, T. & Schwartz, B. (1997). Survey of emm gene sequences and T-antigen types from systemic Streptococcus pyogenes infection isolates collected in San Francisco, California; Atlanta, Georgia; and Connecticut in 1994 and 1995. J Clin Microbiol 35, 1231-1235.
Benda, C., Ebert, J., Scheltema, R. A., Schiller, H. B., Baumgartner, M., Bonneau, F., Mann, M. & Conti, E. (2014). Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol Cell 56, 43-54.
Bessen, D. E., Izzo, M. W., McCabe, E. J. & Sotir, C. M. (1997). Two-domain motif for IgG-binding activity by group A streptococcal emm gene products. Gene 196, 75-82.
Bessen, D. E. (2009). Population biology of the human restricted pathogen, Streptococcus pyogenes. Infect Genet Evol 9, 581-593.
Bhaya, D., Davison, M. & Barrangou, R. (2011). CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297.
Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F. & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41, 7429-7437.
Billal, D. S., Hotomi, M., Yamauchi, K., Fujihara, K., Tamura, S., Kuki, K., Sugita, R., Endou, M., Mukaigawa, J. & Yamanaka, N. (2004). Macrolide-resistant genes of Streptococcus pyogenes isolated from the upper respiratory tract by polymerase chain reaction. J Infect Chemother 10, 115-120.
Bingen, E., Fitoussi, F., Doit, C., Cohen, R., Tanna, A., George, R., Loukil, C., Brahimi, N., Le Thomas, I. & Deforche, D. (2000). Resistance to macrolides in Streptococcus pyogenes in France in pediatric patients. Antimicrob Agents Chemother 44, 1453-1457.
Brenciani, A., Bacciaglia, A., Vecchi, M., Vitali, L. A., Varaldo, P. E. & Giovanetti, E. (2007). Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother 51, 1209-1216.
Briner, A. E., Donohoue, P. D., Gomaa, A. A., Selle, K., Slorach, E. M., Nye, C. H., Beisel, C. L., May, A. P. & Barrangou, R. (2014). Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell 56, 333-339.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y. & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science 303, 1532.
Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V. & van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964.
Brudey, K., Driscoll, J. R., Rigouts, L., Prodinger, W. M., Gori, A., Al-Hajoj, S. A., Allix, C., Aristimuno, L., Arora, J., Baumanis, V., Binder, L., Cafrune, P., Cataldi, A., Cheong, S., Diel, R., Ellermeier, C., Evans, J. T., Fauville-Dufaux, M., Ferdinand, S., de Viedma, D. G., Garzelli, C., Gazzola, L., Gomes, H. M., Guttierez, M. C., Hawkey, P. M., van Helden, P. D., Kadival, G. V., Kreiswirth, B. N., Kremer, K., Kubin, M., Kulkarni, S. P., Liens, B., Lillebaek, T., Ho, M. L., Martin, C., Martin, C., Mokrousov, I., Narvskaia, O., Ngeow, Y. F., Naumann, L., Niemann, S., Parwati, I., Rahim, Z., Rasolofo-Razanamparany, V., Rasolonavalona, T., Rossetti, M. L., Rusch-Gerdes, S., Sajduda, A., Samper, S., Shemyakin, I. G., Singh, U. B., Somoskovi, A., Skuce, R. A., van Soolingen, D., Streicher, E. M., Suffys, P. N., Tortoli, E., Tracevska, T., Vincent, V., Victor, T. C., Warren, R. M., Yap, S. F., Zaman, K., Portaels, F., Rastogi, N. & Sola, C. (2006). Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6, 23.
Buchanan, J. T., Simpson, A. J., Aziz, R. K., Liu, G. Y., Kristian, S. A., Kotb, M., Feramisco, J. & Nizet, V. (2006). DNase expression allows the pathogen group A streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16, 396-400.
Burova, L. A., Koroleva, I. V., Ogurtzov, R. P., Murashov, S. V., Svensson, M. L. & Schalen, C. (1992). Role of streptococcal IgG Fc receptor in tissue deposition of IgG in rabbits immunized with Streptococcus pyogenes. APMIS 100, 567-574.
Burova, L. A. & Schalen, C. (1993). Antigenic diversity of IgA receptors in Streptococcus pyogenes. FEMS Immunol Med Microbiol 7, 47-54.
Burova, L. A., Nagornev, V. A., Pigarevsky, P. V., Gladilina, M. M., Seliverstova, V. G., Schalen, C. & Totolian, A. A. (1998). Triggering of renal tissue damage in the rabbit by IgG Fc-receptor-positive group A streptococci. APMIS 106, 277-287.
Camara, M., Dieng, A. & Boye, C. S. B. (2013). Antibiotic susceptibility of Streptococcus Pyogenes isolated from respiratory tract infections in Dakar, Senegal. Microbiology Insights 6, 71-75.
Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. (2005). The global burden of group A streptococcal diseases. Lancet Infect Dis 5, 685-694.
Carlsson, F., Berggard, K., Stalhammar-Carlemalm, M. & Lindahl, G. (2003). Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J Exp Med 198, 1057-1068.
Carlsson, F., Sandin, C. & Lindahl, G. (2005). Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol 56, 28-39.
Carpousis, A. J. (2003). Degradation of targeted mRNAs in Escherichia coli: regulation by a small antisense RNA. Genes Dev 17, 2351-2355.
Chang, Y., Su, T., Qi, Q. & Liang, Q. (2016). Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system. Microb Cell Fact 15, 195.
Chen, I., Kaufisi, P. & Erdem, G. (2011). Emergence of erythromycin- and clindamycin-resistant Streptococcus pyogenes emm 90 strains in Hawaii. J Clin Microbiol 49, 439-441.
Chhatwal, G. S. & McMillan, D. J. (2005). Uncovering the mysteries of invasive streptococcal diseases. Trends Mol Med 11, 152-155.
Chiang-Ni, C., Zheng, P. X., Ho, Y. R., Wu, H. M., Chuang, W. J., Lin, Y. S., Lin, M. T., Liu, C. C. & Wu, J. J. (2009). emm1/sequence type 28 strains of group A streptococci that express covR at early stationary phase are associated with increased growth and earlier SpeB secretion. J Clin Microbiol 47, 3161-3169.
Chylinski, K., Le Rhun, A. & Charpentier, E. (2013). The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10, 726-737.
Chylinski, K., Makarova, K. S., Charpentier, E. & Koonin, E. V. (2014). Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42, 6091-6105.
Cleary, P. P., Prahbu, U., Dale, J. B., Wexler, D. E. & Handley, J. (1992). Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun 60, 5219-5223.
Cole, J. N., Barnett, T. C., Nizet, V. & Walker, M. J. (2011). Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9, 724-736.
Collin, M. & Olsen, A. (2001). Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 69, 7187-7189.
Commons, R., Rogers, S., Gooding, T., Danchin, M., Carapetis, J., Robins-Browne, R. & Curtis, N. (2008). Superantigen genes in group A streptococcal isolates and their relationship with emm types. J Med Microbiol 57, 1238-1246.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A. & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
Coonan, K. M. & Kaplan, E. L. (1994). In vitro susceptibility of recent North American group A streptococcal isolates to eleven oral antibiotics. Pediatr Infect Dis J 13, 630-635.
Cue, D., Dombek, P. E., Lam, H. & Cleary, P. P. (1998). Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect Immun 66, 4593-4601.
Cui, Y., Li, Y., Gorge, O., Platonov, M. E., Yan, Y., Guo, Z., Pourcel, C., Dentovskaya, S. V., Balakhonov, S. V., Wang, X., Song, Y., Anisimov, A. P., Vergnaud, G. & Yang, R. (2008). Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One 3, e2652.
Cunningham, M. W. (2000). Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13, 470-511.
Dale, J. B., Washburn, R. G., Marques, M. B. & Wessels, M. R. (1996). Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect Immun 64, 1495-1501.
Dale, J. B., Batzloff, M. R., Cleary, P. P., Courtney, H. S., Good, M. F., Grandi, G., Halperin, S., Margarit, I. Y., McNeil, S., Pandey, M., Smeesters, P. R. & Steer, A. C. (2016). Current approaches to group A streptococcal vaccine development. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Edited by J. J. Ferretti, D. L. Stevens & V. A. Fischetti. Oklahoma City (OK): University of Oklahoma Health Sciences Center.
de Buhr, N., Neumann, A., Jerjomiceva, N., von Kockritz-Blickwede, M. & Baums, C. G. (2014). Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology 160, 385-395.
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J. & Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607.
Deveau, H., Barrangou, R., Garneau, J. E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D. A., Horvath, P. & Moineau, S. (2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400.
Dougherty, B. A. & van de Rijn, I. (1992). Molecular characterization of a locus required for hyaluronic acid capsule production in group A streptococci. J Exp Med 175, 1291-1299.
Dunkelberger, J. R. & Song, W. C. (2010). Complement and its role in innate and adaptive immune responses. Cell Res 20, 34-50.
Edwards, R. J., Taylor, G. W., Ferguson, M., Murray, S., Rendell, N., Wrigley, A., Bai, Z., Boyle, J., Finney, S. J., Jones, A., Russell, H. H., Turner, C., Cohen, J., Faulkner, L. & Sriskandan, S. (2005). Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192, 783-790.
Eriksson, A. & Norgren, M. (2003). Cleavage of antigen-bound immunoglobulin G by SpeB contributes to streptococcal persistence in opsonizing blood. Infect Immun 71, 211-217.
Fabre, L., Zhang, J., Guigon, G., Le Hello, S., Guibert, V., Accou-Demartin, M., de Romans, S., Lim, C., Roux, C., Passet, V., Diancourt, L., Guibourdenche, M., Issenhuth-Jeanjean, S., Achtman, M., Brisse, S., Sola, C. & Weill, F. X. (2012). CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS One 7, e36995.
Ferretti, J. & Kohler, W. (2016). History of streptococcal research. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Edited by J. J. Ferretti, D. L. Stevens & V. A. Fischetti. Oklahoma City: The University of Oklahoma Health Sciences Center.
Fields, B. S., Benson, R. F. & Besser, R. E. (2002). Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15, 506-526.
Fischetti, V. A. (1991). Streptococcal M protein. Sci Am 264, 58-65.
Flores, A. R., Jewell, B. E., Fittipaldi, N., Beres, S. B. & Musser, J. M. (2012). Human disease isolates of serotype M4 and M22 group A streptococcus lack genes required for hyaluronic acid capsule biosynthesis. MBio 3, e00413-00412.
Foley, M. J. & Wood, W. B., Jr. (1959). Studies on the pathogenicity of group A streptococci. II. The antiphagocytic effects of the M protein and the capsular gel. J Exp Med 110, 617-628.
Fraser, J., Arcus, V., Kong, P., Baker, E. & Proft, T. (2000). Superantigens - powerful modifiers of the immune system. Mol Med Today 6, 125-132.
Frick, I. M., Akesson, P., Cooney, J., Sjobring, U., Schmidt, K. H., Gomi, H., Hattori, S., Tagawa, C., Kishimoto, F. & Bjorck, L. (1994). Protein H--a surface protein of Streptococcus pyogenes with separate binding sites for IgG and albumin. Mol Microbiol 12, 143-151.
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586.
Gerber, M. A. (1995). Antibiotic resistance in group A streptococci. Pediatr Clin North Am 42, 539-551.
Gerlach, D., Reichardt, W. & Vettermann, S. (1998). Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol Lett 160, 217-224.
Gibson, C. M. & Caparon, M. G. (1996). Insertional inactivation of Streptococcus pyogenes sod suggests that prtF is regulated in response to a superoxide signal. J Bacteriol 178, 4688-4695.
Gibson, C. M., Mallett, T. C., Claiborne, A. & Caparon, M. G. (2000). Contribution of NADH oxidase to aerobic metabolism of Streptococcus pyogenes. J Bacteriol 182, 448-455.
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Weissman, J. S. & Qi, L. S. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451.
Gong, B., Shin, M., Sun, J., Jung, C. H., Bolt, E. L., van der Oost, J. & Kim, J. S. (2014). Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proc Natl Acad Sci U S A 111, 16359-16364.
Graham, M. R., Virtaneva, K., Porcella, S. F., Barry, W. T., Gowen, B. B., Johnson, C. R., Wright, F. A. & Musser, J. M. (2005). Group A streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am J Pathol 166, 455-465.
Groenen, P. M., Bunschoten, A. E., van Soolingen, D. & van Embden, J. D. (1993). Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10, 1057-1065.
Gunderson, F. F. & Cianciotto, N. P. (2013). The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. MBio 4, e00074-00013.
Gunderson, F. F., Mallama, C. A., Fairbairn, S. G. & Cianciotto, N. P. (2015). Nuclease activity of Legionella pneumophila Cas2 promotes intracellular infection of amoebal host cells. Infect Immun 83, 1008-1018.
Hanski, E. & Caparon, M. (1992). Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes. Proc Natl Acad Sci U S A 89, 6172-6176.
Hauser, A. R., Stevens, D. L., Kaplan, E. L. & Schlievert, P. M. (1991). Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock-like syndrome. J Clin Microbiol 29, 1562-1567.
Heler, R., Samai, P., Modell, J. W., Weiner, C., Goldberg, G. W., Bikard, D. & Marraffini, L. A. (2015). Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519, 199-202.
Henderson, B., Nair, S., Pallas, J. & Williams, M. A. (2011). Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35, 147-200.
Henle, E. S. & Linn, S. (1997). Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272, 19095-19098.
Henningham, A., Yamaguchi, M., Aziz, R. K., Kuipers, K., Buffalo, C. Z., Dahesh, S., Choudhury, B., van Vleet, J., Yamaguchi, Y., Seymour, L. M., Zakour, N. L. B., He, L., Smith, H. V., Grimwood, K., Beatson, S. A., Ghosh, P., Walker, M. J., Nizet, V. & Cole, J. N. (2014). Mutual exclusivity of hyaluronan and hyaluronidase in invasive group A streptococcus. J Biol Chem 289, 32303-32315.
Hertzen, E., Johansson, L., Wallin, R., Schmidt, H., Kroll, M., Rehn, A. P., Kotb, M., Morgelin, M. & Norrby-Teglund, A. (2010). M1 protein-dependent intracellular trafficking promotes persistence and replication of Streptococcus pyogenes in macrophages. J Innate Immun 2, 534-545.
Hertzen, E., Johansson, L., Kansal, R., Hecht, A., Dahesh, S., Janos, M., Nizet, V., Kotb, M. & Norrby-Teglund, A. (2012). Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile. PLoS One 7, e35218.
Herwald, H., Cramer, H., Morgelin, M., Russell, W., Sollenberg, U., Norrby-Teglund, A., Flodgaard, H., Lindbom, L. & Bjorck, L. (2004). M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116, 367-379.
Hidalgo-Grass, C., Mishalian, I., Dan-Goor, M., Belotserkovsky, I., Eran, Y., Nizet, V., Peled, A. & Hanski, E. (2006). A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J 25, 4628-4637.
Horstmann, R. D., Sievertsen, H. J., Leippe, M. & Fischetti, V. A. (1992). Role of fibrinogen in complement inhibition by streptococcal M protein. Infect Immun 60, 5036-5041.
Hsueh, P. R., Shyr, J. M. & Wu, J. J. (2006). Changes in macrolide resistance among respiratory pathogens after decreased erythromycin consumption in Taiwan. Clin Microbiol Infect 12, 296-298.
Huang, Y. T. (2015). The study of strain-specific CsrA-regulatory system in controlling Helicobacter pylori motility.
Hynes, W. L. & Tagg, J. R. (1985). A simple plate assay for detection of group A streptococcus proteinase. J Microbiol Methods 4, 25-31.
Ishikawa, T., Mizunoe, Y., Kawabata, S., Takade, A., Harada, M., Wai, S. N. & Yoshida, S. (2003). The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185, 1010-1017.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
Jore, M. M., Lundgren, M., van Duijn, E., Bultema, J. B., Westra, E. R., Waghmare, S. P., Wiedenheft, B., Pul, U., Wurm, R., Wagner, R., Beijer, M. R., Barendregt, A., Zhou, K., Snijders, A. P. Dickman, M. J., Doudna, J. A., Boekema, E. J., Heck, A. J., van der Oost, J. & Brouns, S. J. (2011). Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18, 529-536.
Jung, T. Y., An, Y., Park, K. H., Lee, M. H., Oh, B. H. & Woo, E. (2015). Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity. Structure 23, 782-790.
Kamerbeek, J., Schouls, L., Kolk, A., van Agterveld, M., van Soolingen, D., Kuijper, S., Bunschoten, A., Molhuizen, H., Shaw, R., Goyal, M. & van Embden, J. (1997). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907-914.
Kapur, V., Majesky, M. W., Li, L. L. B., R. A. & Musser, J. M. (1993a). Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A 90, 7676-7680.
Kapur, V., Topouzis, S., Majesky, M. W., Li, L.-L., Hamrick, M. R., Hamill, R. J., Patti, J. M. & Musser, J. M. (1993b). A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog 15, 327-346.
Kapur, V., Topouzis, S., Majesky, M. W., Li, L. L., Hamrick, M. R., Hamill, R. J., Patti, J. M. & Musser, J. M. (1993c). A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog 15, 327-346.
Kaur, S. J., Nerlich, A., Bergmann, S., Rohde, M., Fulde, M., Zähner, D., Hanski, E., Zinkernagel, A., Nizet, V., Chhatwal, G. S. & Talay, S. R. (2010). The CXC chemokine-degrading protease SpyCep of Streptococcus pyogenes promotes its uptake into endothelial cells. J Biol Chem 285, 27798-27805.
Kimoto, H., Fujii, Y., Yokota, Y. & Taketo, A. (2005). Molecular characterization of NADase-streptolysin O operon of hemolytic streptococci. Biochim Biophys Acta 1681, 134-149.
King, K. Y., Horenstein, J. A. & Caparon, M. G. (2000). Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol 182, 5290-5299.
Kuo, C. F., Lin, Y. S., Chuang, W. J., Wu, J. J. & Tsao, N. (2008). Degradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis. Infect Immun 76, 1163-1169.
Kurupati, P., Turner, C. E., Tziona, I., Lawrenson, R. A., Alam, F. M., Nohadani, M., Stamp, G. W., Zinkernagel, A. S., Nizet, V., Edwards, R. J. & Sriskandan, S. (2010). Chemokine-cleaving Streptococcus pyogenes protease SpyCEP is necessary and sufficient for bacterial dissemination within soft tissues and the respiratory tract. Mol Microbiol 76, 1387-1397.
Lancefield, R. C. (1933). A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 57, 571-595.
Lancefield, R. C. (1962). Current knowledge of type-specific M antigens of group A streptococci. J Immunol 89, 307-313.
LaPenta, D., Rubens, C., Chi, E. & Cleary, P. P. (1994). Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A 91, 12115-12119.
Lehmann, Y., Meile, L. & Teuber, M. (1996). Rubrerythrin from Clostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function. J Bacteriol 178, 7152-7158.
Lei, B., DeLeo, F. R., Hoe, N. P., Graham, M. R., Mackie, S. M., Cole, R. L., Liu, M., Hill, H. R., Low, D. E., Federle, M. J., Scott, J. R. & Musser, J. M. (2001). Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat Med 7, 1298-1305.
Liu, M., Zhu, H., Li, J., Garcia, C. C., Feng, W., Kirpotina, L. N., Hilmer, J., Tavares, L. P., Layton, A. W., Quinn, M. T., Bothner, B., Teixeira, M. M. & Lei, B. (2012). Group A streptococcus secreted esterase hydrolyzes platelet-activating factor to impede neutrophil recruitment and facilitate innate immune evasion. PLoS Pathog 8, e1002624.
Louwen, R., Horst-Kreft, D., de Boer, A. G., van der Graaf, L., de Knegt, G., Hamersma, M., Heikema, A. P., Timms, A. R., Jacobs, B. C., Wagenaar, J. A., Endtz, H. P., van der Oost, J., Wells, J. M., Nieuwenhuis, E. E., van Vliet, A. H., Willemsen, P. T., van Baarlen, P. & van Belkum, A. (2013). A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. Eur J Clin Microbiol Infect Dis 32, 207-226.
Lu, S. L., Kuo, C. F., Chen, H. W., Yang, Y. S., Liu, C. C., Anderson, R., Wu, J. J. & Lin, Y. S. (2015). Insufficient Acidification of Autophagosomes Facilitates Group A Streptococcus Survival and Growth in Endothelial Cells. MBio 6, e01435-01415.
Luo, Y., Han, Z., Chin, S. M. & Linn, S. (1994). Three chemically distinct types of oxidants formed by iron-mediated Fenton reactions in the presence of DNA. Proc Natl Acad Sci U S A 91, 12438-12442.
Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. (2002). A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30, 482-496.
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1, 7.
Makarova, K. S., Aravind, L., Wolf, Y. I. & Koonin, E. V. (2011a). Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 6, 38.
Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., van der Oost, J. & Koonin, E. V. (2011b). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9, 467-477.
Makarova, K. S. & Koonin, E. V. (2015). Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311, 47-75.
Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., van der Oost, J., Backofen, R. & Koonin, E. V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736.
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826.
Maresch, R., Mueller, S., Veltkamp, C., Ollinger, R., Friedrich, M., Heid, I., Steiger, K., Weber, J., Engleitner, T., Barenboim, M., Klein, S., Louzada, S., Banerjee, R., Strong, A., Stauber, T., Gross, N., Geumann, U., Lange, S., Ringelhan, M., Varela, I., Unger, K., Yang, F., Schmid, R. M., Vassiliou, G. S., Braren, R., Schneider, G., Heikenwalder, M., Bradley, A., Saur, D., & Rad, R. (2016). Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun 7, 10770.
Masse, E., Escorcia, F. E. & Gottesman, S. (2003). Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17, 2374-2383.
Mayfield, J. A., Liang, Z., Agrahari, G., Lee, S. W., Donahue, D. L., Ploplis, V. A. & Castellino, F. J. (2014). Mutations in the control of virulence sensor gene from Streptococcus pyogenes after infection in mice lead to clonal bacterial variants with altered gene regulatory activity and virulence. PLoS One 9, e100698.
McArthur, J. D. & Walker, M. J. (2006). Domains of group A streptococcal M protein that confer resistance to phagocytosis, opsonization and protection: implications for vaccine development. Mol Microbiol 59, 1-4.
McCord, J. M. & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055.
Medina, E., Molinari, G., Rohde, M., Haase, B., Chhatwal, G. S. & Guzman, C. A. (1999). Fc-mediated nonspecific binding between fibronectin-binding protein I of Streptococcus pyogenes and human immunoglobulins. J Immunol 163, 3396-3402.
Medina, E., Goldmann, O., Toppel, A. W. & Chhatwal, G. S. (2003a). Survival of Streptococcus pyogenes within host phagocytic cells: a pathogenic mechanism for persistence and systemic invasion. The Journal of infectious diseases 187, 597-603.
Medina, E., Rohde, M. & Chhatwal, G. S. (2003b). Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun 71, 5376-5380.
Miller, R. A. & Britigan, B. E. (1997). Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10, 1-18.
Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740.
Mokrousov, I., Narvskaya, O., Limeschenko, E. & Vyazovaya, A. (2005). Efficient discrimination within a Corynebacterium diphtheriae epidemic clonal group by a novel macroarray-based method. J Clin Microbiol 43, 1662-1668.
Mokrousov, I., Limeschenko, E., Vyazovaya, A. & Narvskaya, O. (2007). Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol J 2, 901-906.
Mokrousov, I., Vyazovaya, A., Kolodkina, V., Limeschenko, E., Titov, L. & Narvskaya, O. (2009). Novel macroarray-based method of Corynebacterium diphtheriae genotyping: evaluation in a field study in Belarus. Eur J Clin Microbiol Infect Dis 28, 701-703.
Molinari, G., Talay, S. R., Valentin-Weigand, P., Rohde, M. & Chhatwal, G. S. (1997). The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect Immun 65, 1357-1363.
Molinari, G., Rohde, M., Guzman, C. A. & Chhatwal, G. S. (2000). Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells. Cell Microbiol 2, 145-154.
Molinari, G., Rohde, M., Talay, S. R., Chhatwal, G. S., Beckert, S. & Podbielski, A. (2001). The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol Microbiol 40, 99-114.
Musser, J. M., Hauser, A. R., Kim, M. H., Schlievert, P. M., Nelson, K. & Selander, R. K. (1991). Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc Natl Acad Sci U S A 88, 2668-2672.
Nakata, M., Koller, T., Moritz, K., Ribardo, D., Jonas, L., McIver, K. S., Sumitomo, T., Terao, Y., Kawabata, S., Podbielski, A., & Kreikemeyer, B. (2009). Mode of expression and functional characterization of FCT-3 pilus region-encoded proteins in Streptococcus pyogenes serotype M49. Infect Immun 77, 32-44.
Norrby-Teglund, A., Holm, S. E. & Norgren, M. (1994a). Detection and nucleotide sequence analysis of the speC gene in Swedish clinical group A streptococcal isolates. J Clin Microbiol 32, 705-709.
Norrby-Teglund, A., Newton, D., Kotb, M., Holm, S. E. & Norgren, M. (1994b). Superantigenic properties of the group A streptococcal exotoxin SpeF (MF). Infect Immun 62, 5227-5233.
Norrby-Teglund, A., Norgren, M., Holm, S. E., Andersson, U. & Andersson, J. (1994c). Similar cytokine induction profiles of a novel streptococcal exotoxin, MF, and pyrogenic exotoxins A and B. Infect Immun 62, 3731-3738.
Norrby-Teglund, A., Pauksens, K., Holm, S. E. & Norgren, M. (1994d). Relation between low capacity of human sera to inhibit streptococcal mitogens and serious manifestation of disease. J Infect Dis 170, 585-591.
Nozawa, T., Furukawa, N., Aikawa, C., Watanabe, T., Haobam, B., Kurokawa, K., Maruyama, F. & Nakagawa, I. (2011). CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS One 6, e19543.
Nunez, J. K., Kranzusch, P. J., Noeske, J., Wright, A. V., Davies, C. W. & Doudna, J. A. (2014). Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21, 528-534.
Nunez, J. K., Lee, A. S., Engelman, A. & Doudna, J. A. (2015). Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193-198.
Ochel, A., Rohde, M., Chhatwal, G. S. & Talay, S. R. (2014). The M1 protein of Streptococcus pyogenes triggers an innate uptake mechanism into polarized human endothelial cells. J Innate Immun 6, 585-596.
Oehmcke, S., Shannon, O., Morgelin, M. & Herwald, H. (2010). Streptococcal M proteins and their role as virulence determinants. Clin Chim Acta 411, 1172-1180.
Ordon, J., Gantner, J., Kemna, J., Schwalgun, L., Reschke, M., Streubel, J., Boch, J. & Stuttmann, J. (2016). Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J. [Epub ahead of print].
Osterlund, A. & Engstrand, L. (1997). An intracellular sanctuary for Streptococcus pyogenes in human tonsillar epithelium--studies of asymptomatic carriers and in vitro cultured biopsies. Acta Otolaryngol 117, 883-888.
Pangburn, M. K. (2000). Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement. Immunopharmacology 49, 149-157.
Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., Teo, S., Olsen, K. M., Gregg, A., Noggle, S. & Tessier-Lavigne, M. (2016). Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125-129.
Perez-Caballero, D., Garcia-Laorden, I., Cortes, G., Wessels, M. R., de Cordoba, S. R. & Alberti, S. (2004). Interaction between complement regulators and Streptococcus pyogenes: binding of C4b-binding protein and factor H/factor H-like protein 1 to M18 strains involves two different cell surface molecules. J Immunol 173, 6899-6904.
Perez-Casal, J., Okada, N., Caparon, M. G. & Scott, J. R. (1995). Role of the conserved C-repeat region of the M protein of Streptococcus pyogenes. Mol Microbiol 15, 907-916.
Podbielski, A., Zarges, I., Flosdorff, A. & Weber-Heynemann, J. (1996). Molecular characterization of a major serotype M49 group A streptococcal DNase gene (sdaD). Infect Immun 64, 5349-5356.
Proft, T., Sriskandan, S., Yang, L. & Fraser, J. D. (2003). Superantigens and streptococcal toxic shock syndrome. Emerg Infect Dis 9, 1211-1218.
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183.
Ralph, A. P. & Carapetis, J. R. (2013). Group A streptococcal diseases and their global burden. Curr Top Microbiol Immunol 368, 1-27.
Rasmussen, M. & Bjorck, L. (2002). Proteolysis and its regulation at the surface of Streptococcus pyogenes. Mol Microbiol 43, 537-544.
Raz, A., Tanasescu, A. M., Zhao, A. M., Serrano, A., Alston, T., Sol, A., Bachrach, G. & Fischetti, V. A. (2015). Streptococcus pyogenes sortase mutants are highly susceptible to killing by host factors due to aberrant envelope physiology. PLoS One 10, e0140784.
Reeks, J., Naismith, J. H. & White, M. F. (2013). CRISPR interference: a structural perspective. Biochem J 453, 155-166.
Rowe, L. A., Degtyareva, N. & Doetsch, P. W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med 45, 1167-1177.
Samai, P., Pyenson, N., Jiang, W., Goldberg, G. W., Hatoum-Aslan, A. & Marraffini, L. A. (2015). Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164-1174.
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning., Second edn. New York: Cold Spring Harbor Laboratory Press.
Sampson, T. R., Saroj, S. D., Llewellyn, A. C., Tzeng, Y. L. & Weiss, D. S. (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497, 254-257.
Sampson, T. R. & Weiss, D. S. (2013). Alternative roles for CRISPR/Cas systems in bacterial pathogenesis. PLoS Pathog 9, e1003621.
Sandin, C., Carlsson, F. & Lindahl, G. (2006). Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol Microbiol 59, 20-30.
Sauermann, R., Gattringer, R., Graninger, W., Buxbaum, A. & Georgopoulos, A. (2003). Phenotypes of macrolide resistance of group A streptococci isolated from outpatients in Bavaria and susceptibility to 16 antibiotics. J Antimicrob Chemother 51, 53-57.
Schreier, J. B. (1969). Modification of deoxyribonuclease test medium for rapid identification of Serratia marcescens. Am J Clin Pathol 51, 711-716.
Seppälä, H., Skurnik, M., Soini, H., Roberts, M. C. & Huovinen, P. (1998). A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob Agents Chemother 42, 257-262.
Sharma, O., O'Seaghdha, M., Velarde, J. J. & Wessels, M. R. (2016). NAD+-glycohydrolase promotes intracellular survival of group A streptococcus. PLoS Pathog 12, e1005468.
Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H. & Habben, J. E. (2016). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 14, 1-10.
Shmakov, S., Abudayyeh, O. O., Makarova, K. S. Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F. & Koonin, E. V. (2015). Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell 60, 385-397.
Siemens, N., Patenge, N., Otto, J., Fiedler, T. & Kreikemeyer, B. (2011). Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing. J Biol Chem 286, 21612-21622.
Simon, D. & Ferretti, J. J. (1991). Electrotransformation of Streptococcus pyogenes with plasmid and linear DNA. FEMS Microbiol Lett 66, 219-224.
Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P. & Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30, 1335-1342.
Smeesters, P. R., McMillan, D. J. & Sriprakash, K. S. (2010). The streptococcal M protein: a highly versatile molecule. Trends Microbiol 18, 275-282.
Smith, J. L. (2004). The physiological role of ferritin-like compounds in bacteria. Crit Rev Microbiol 30, 173-185.
Sorek, R., Lawrence, C. M. & Wiedenheft, B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82, 237-266.
Sriskandan, S., Faulkner, L. & Hopkins, P. (2007). Streptococcus pyogenes: insight into the function of the streptococcal superantigens. Int J Biochem Cell Biol 39, 12-19.
Staali, L., Morgelin, M., Bjorck, L. & Tapper, H. (2003). Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. Cell Microbiol 5, 253-265.
Staals, R. H., Zhu, Y., Taylor, D. W., Kornfeld, J. E., Sharma, K., Barendregt, A., Koehorst, J. J., Vlot, M., Neupane, N., Varossieau, K., Sakamoto, K., Suzuki, T., Dohmae, N., Yokoyama, S., Schaap, P. J., Urlaub, H., Heck, A. J., Nogales, E., Doudna, J. A., Shinkai, A. & van der Oost, J. (2014). RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell 56, 518-530.
Stenberg, L., O'Toole, P. & Lindahl, G. (1992). Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes: characterization of the proteins expressed by four strains of different M-type. Mol Microbiol 6, 1185-1194.
Stevens, D. L. (2000). Streptococcal toxic shock syndrome associated with necrotizing fasciitis. Annu Rev Med 51, 271-288.
Sugareva, V., Arlt, R., Fiedler, T., Riani, C., Podbielski, A. & Kreikemeyer, B. (2010). Serotype- and strain- dependent contribution of the sensor kinase CovS of the CovRS two-component system to Streptococcus pyogenes pathogenesis. BMC Microbiol 10, 34.
Sumby, P., Barbian, K. D., Gardner, D. J., Whitney, A. R., Welty, D. M., Long, R. D., Bailey, J. R., Parnell, M. J., Hoe, N. P., Adams, G. G., Deleo, F. R. & Musser, J. M. (2005). Extracellular deoxyribonuclease made by group A streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A 102, 1679-1684.
Talay, S. R., Valentin-Weigand, P., Jerlstrom, P. G., Timmis, K. N. & Chhatwal, G. S. (1992). Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect Immun 60, 3837-3844.
Tamulaitis, G., Kazlauskiene, M., Manakova, E., Venclovas, C., Nwokeoji, A. O., Dickman, M. J., Horvath, P. & Siksnys, V. (2014). Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell 56, 506-517.
Tao, L. (1998). Streptococcal integration vectors for gene inactivation and cloning. Methods Cell Sci 20, 59-64.
Terao, Y., Kawabata, S., Nakata, M., Nakagawa, I. & Hamada, S. (2002). Molecular characterization of a novel fibronectin-binding protein of Streptococcus pyogenes strains isolated from toxic shock-like syndrome patients. J Biol Chem 277, 47428-47435.
Terao, Y., Mori, Y., Yamaguchi, M., Shimizu, Y., Ooe, K., Hamada, S. & Kawabata, S. (2008). Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity. J Biol Chem 283, 6253-6260.
Terao, Y. (2012). The virulence factors and pathogenic mechanisms of Streptococcus pyogenes. J Oral Biosci 54, 96-100.
Todd, R. F., 3rd (1996). The continuing saga of complement receptor type 3 (CR3). J Clin Invest 98, 1-2.
Tsai, P.-J., Kuo, C.-F., Lin, K.-Y., Lin, Y.-S., Lei, H.-Y., Chen, F.-F., Wang, J.-R. & Wu, J.-J. (1998). Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect Immun 66, 1460-1466.
Tsai, P. J., Lin, Y. S., Kuo, C. F., Lei, H. Y. & Wu, J. J. (1999). Group A streptococcus induces apoptosis in human epithelial cells. Infect Immun 67, 4334-4339.
Tsou, C. C., Chiang-Ni, C., Lin, Y. S., Chuang, W. J., Lin, M. T., Liu, C. C. & Wu, J. J. (2008). An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against multiple stresses. Infect Immun 76, 4038-4045.
Turner, C. E., Kurupati, P., Jones, M. D., Edwards, R. J. & Sriskandan, S. (2009). Emerging role of the interleukin-8 cleaving enzyme SpyCEP in clinical Streptococcus pyogenes infection. J Infect Dis 200, 555-563.
Urban, C. F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., Nacken, W., Brinkmann, V., Jungblut, P. R. & Zychlinsky, A. (2009). Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5, e1000639.
van Embden, J. D., van Gorkom, T., Kremer, K., Jansen, R., van Der Zeijst, B. A. & Schouls, L. M. (2000). Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol 182, 2393-2401.
Villaseñor-Sierra, A., Katahira, E., Jaramillo-Valdivia, A. N., de los Angeles Barajas-García, M., Bryant, A., Morfín-Otero, R., Márquez-Díaz, F., Tinoco, J. C., Sánchez-Corona, J. & Stevens, D. L. (2012). Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains isolated from invasive and non-invasive infections from Mexico and the USA during 1999–2010. Int J Infect Dis 16, e178-e181.
Viswanathan, P., Murphy, K., Julien, B., Garza, A. G. & Kroos, L. (2007). Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 189, 3738-3750.
Voyich, J. M., Sturdevant, D. E., Braughton, K. R., Kobayashi, S. D., Lei, B., Virtaneva, K., Dorward, D. W., Musser, J. M. & DeLeo, F. R. (2003). Genome-wide protective response used by group A streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A 100, 1996-2001.
Walker, M. J., Hollands, A., Sanderson-Smith, M. L., Cole, J. N., Kirk, J. K., Henningham, A., McArthur, J. D., Dinkla, K., Aziz, R. K., Kansal, R. G., Simpson, A. J., Buchanan, J. T., Chhatwal, G. S., Kotb, M. & Nizet, V. (2007). DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13, 981-985.
Walker, M. J., Barnett, T. C., McArthur, J. D., Cole, J. N., Gillen, C. M., Henningham, A., Sriprakash, K. S., Sanderson-Smith, M. L. & Nizet, V. (2014). Disease manifestations and pathogenic mechanisms of group A streptococcus. Clin Microbiol Rev 27, 264-301.
Wang, C. H., Chiang-Ni, C., Kuo, H. T., Zheng, P. X., Tsou, C. C., Wang, S., Tsai, P. J., Chuang, W. J., Lin, Y. S., Liu, C. C. & Wu, J. J. (2013). Peroxide responsive regulator PerR of group A streptococcus is required for the expression of phage-associated DNase Sda1 under oxidative stress. PLoS One 8, e81882.
Wang, Q., Lu, Y., Xin, Y., Wei, L., Huang, S. & Xu, J. (2016). Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88, 1071-1081.
Wang, Y. & Taylor, D. E. (1990). Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94, 23-28.
Wei, Y., Terns, R. M. & Terns, M. P. (2015). Cas9 function and host genome sampling in type II-A CRISPR-Cas adaptation. Genes Dev 29, 356-361.
Weinberger, A. D. & Gilmore, M. S. (2012). CRISPR-Cas: to take up DNA or not-that is the question. Cell Host Microbe 12, 125-126.
Wessels, M. R., Moses, A. E., Goldberg, J. B. & DiCesare, T. J. (1991). Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci U S A 88, 8317-8321.
Westra, E. R., Swarts, D. C., Staals, R. H., Jore, M. M., Brouns, S. J. & van der Oost, J. (2012). The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu Rev Genet 46, 311-339.
Westra, E. R., Buckling, A. & Fineran, P. C. (2014). CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12, 317-326.
Wexler, D. E. & Cleary, P. P. (1985). Purification and characteristics of the streptococcal chemotactic factor inactivator. Infect Immun 50, 757-764.
WHO (2005).The current evidence for the burden of group A streptococcal diseases. Geneva.
Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S. M., Ma, W. & Doudna, J. A. (2009). Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904-912.
Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338.
Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P. & Halbwachs-Mecarelli, L. (2000). Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80, 617-653.
Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., Smith, S. S., Michael, M. Z. & Graham, M. W. (1989). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17, 3469-3478.
Xie, S. Y. (2016). Role of group A streptococcus NADase in intracellular multiplication in human endothelial cells. Diss. of National Cheng Kung University.
Zhao, G., Ceci, P., Ilari, A., Giangiacomo, L., Laue, T. M., Chiancone, E. & Chasteen, N. D. (2002). Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277, 27689-27696.
Zheng, P. X. (2006). Characterization of temporal regulation of speB in group A streptococcus. Diss. of National Cheng Kung University.
Zheng, P. X., Chung, K. T., Chiang-Ni, C., Wang, S. Y., Tsai, P. J., Chuang, W. J., Lin, Y. S., Liu, C. C. & Wu, J. J. (2013). Complete genome sequence of emm1 Streptococcus pyogenes A20, a strain with an intact two-component system, CovRS, isolated from a patient with necrotizing fasciitis. Genome Announcements 1, e00149-12.
Zheng, P. X., Chiang-Ni, C., Wang, S. Y., Tsai, P. J., Kuo, C. F., Chuang, W. J., Lin, Y. S., Liu, C. C. & Wu, J. J. (2014). Arrangement and number of clustered regularly interspaced short palindromic repeat spacers are associated with erythromycin susceptibility in emm12, emm75 and emm92 of group A streptococcus. Clin Microbiol Infect 20, 516-523.
Zheng, P. X. (2015). Relationship of CRISPR-cas system with emm typing and erythromycin susceptibility in Streptococcus pyogenes. Diss. of National Cheng Kung University.
Zheng, P. X., Chan, Y. C., Chiou, C. S., Chiang-Ni, C., Wang, S. Y., Tsai, P. J., Chuang, W. J., Lin, Y. S., Liu, C. C. & Wu, J. J. (2015). Clustered regularly interspaced short palindromic repeats are emm type-specific in highly prevalent group A streptococci. PLoS One 10, e0145223.
Zhu, L., Olsen, R. J., Nasser, W., de la Riva Morales, I. & Musser, J. M. (2015). Trading capsule for increased cytotoxin production: contribution to virulence of a newly emerged clade of emm89 Streptococcus pyogenes. MBio 6, e01378-01315.
Zingaretti, C., Falugi, F., Nardi-Dei, V., Pietrocola, G., Mariani, M., Liberatori, S., Gallotta, M., Tontini, M., Tani, C., Speziale, P., Grandi, G. & Margarit, I. (2010). Streptococcus pyogenes SpyCEP: a chemokine-inactivating protease with unique structural and biochemical features. The FASEB Journal 24, 2839-2848.
Zinkernagel, A. S., Timmer, A. M., Pence, M. A., Locke, J. B., Buchanan, J. T., Turner, C. E., Mishalian, I., Sriskandan, S., Hanski, E. & Nizet, V. (2008). The IL-8 protease SpyCEP/ScpC of group A streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 4, 170-178.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw