進階搜尋


下載電子全文  
系統識別號 U0026-1901201511183200
論文名稱(中文) 添加異丙醇及異丁醇含水柴油之節能與污染減量
論文名稱(英文) Energy Saving and Pollution Reduction by Adding Water Containing Iso-Butanol and Iso-Propanol in the Diesel Fuel Blends
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 103
學期 1
出版年 104
研究生(中文) 蔡仁豪
研究生(英文) Jen-Hao Tsai
學號 P56024194
學位類別 碩士
語文別 英文
論文頁數 74頁
口試委員 指導教授-李文智
口試委員-楊錫賢
口試委員-方國權
口試委員-林聖倫
中文關鍵字 含水柴油  異丁醇  異丙醇  氮氧化物  粒狀物  多環芳香烴 
英文關鍵字 Water emulsified diesel  iso-butanol  iso-propanol  NOx  PM  PAHs 
學科別分類
中文摘要 石油危機為當代目前最熱門議題之一,替代燃料的發展同時成為了目前最重要課題。本研究室利用含水柴油混合不同比例之異丁醇與異丙醇,來探討研究其能源效益以及污染物的減量,並進一步評估是否能成為未來替代能源的選擇之一。本研究主要分三部分,第一是油品穩定性測試,第二為能源效益的探討,最後為各項廢氣分析結果與討論。本實驗先調配兩種主要不同的比例的醇類,分別是5%異丙醇加上15%異丁醇(P5B15)和1%異丙醇(P1B19)加上19%異丁醇來作探討不同比例間的差異,並同時混入0.5%以及1%的水,以探討含水柴油之影響。
在油品穩定測試中,經重力測試以及離心力測試後,僅P1B19W1有分層情形,故不適合用於接下來的柴油測試。制動馬力單位耗油量(BSFC)以及制動熱效率(BTE)為主要兩大能源效益的指標,隨著異丁醇或含水比例的增加皆造成更高的BSFC,其主要原因係因異丁醇或水都有較低的熱值,故為達同樣的輸出功率則得需要更多燃料來達到目的。BTE則因含水量上生而有增加的情形,尤其P5B15W1在低負載時有多原柴油約1%的BTE表現,但負載增加則又全都低於原柴油。相較於各種油品,在35 kW有最大的差異,柴油BTE高約16 - 22%。此外,測量缸內壓力以及計算熱釋放後,也觀察到含水量以及異丁醇增加時會造成部分油品壓力會稍微上升以及點火延遲。
在廢氣分析上實驗結果發現,因P1B19之熱值較P5B15低而較易使燃燒溫度較低,而導致較低的NOx排放,相較於原柴油,其減量約為12 – 35%,而P5B15僅有8 – 33%。但在CO、PM上,則以P5B15有較好的表現,其相較於原柴油減量分別可達13 – 37%、、37 - 50%,其中PM減量比P1B19更多出10 – 20%左右。至於HC則都高於原柴油,但以P1B19的排放增量最多,約為6 – 30%,比P5B15更多出3 – 10%。
隨著含水量增加時,NOx在隨著含水量的增加其減量也隨之增加。因水的高飽和蒸汽壓易造燃燒時冷卻效應進而降低燃燒溫度,使的NOx排放減少,以P5B15W1減量21 – 38%為最多。CO以及PM同樣也上升,P5B15W1減量分別約為5 – 17%和7 – 26%,皆略高於不含水的混和柴油。而HC則以P1B19W05增量最多,約增加26 – 51%左右。
總PAHs排放相較於原柴油皆有減少。而比較兩種不同比例在各負載下,P5B15較P1B19還少了12 - 22%。至於含水柴油隨著含水量上生則PAHs有增加的趨勢,其中以P5B15W1相較於P5B15W05在各不同負載下還增加了8 - 20%。此外BaPeq也以P5B15下降最多,在各負載下約下降28 – 44%。
總而言之,不同異丁醇以及異丙醇比例之含水柴油可有助於熱效率的上升,雖會導致部分廢氣汙染物因含水關係而有上升的情形,但整體上相較於原柴油還是有減量的效果,而達到節能減碳的目的。
英文摘要 The oil crisis is an emergency issue nowadays which makes developing alternative fuels one of the most important technologies in the world. In this research, the energy efficiency and reduction of pollutant emissions were investigated by using different ratios of isopropanol and isobutanol in blends of petroleum diesel. The study is divided into three parts: (i) stability tests of blends (ii) energy efficiency in diesel engine (iii) exhaust gas analysis. Two blends with different isobutanol and isopropanol ratios, 5% isopropanol with 15% isobutnaol and 1% isopropanol and 19% isobutnaol, were used in this study and compared against the performance of petroleum diesel as a base fuel. Additionally, water addition strategy was included for further comparison.
First of all, only P1B19W1 did not pass the stability which included gravitational test and centrifugal test. Break Specific Fuel Consumption (BSFC) and Break Thermal Efficiency (BTE) were the two main criteria used to evaluate the energy efficiency of the fuel blends. BSFC increased with increasing ratios of isobutanol and water fractions since the heating value decreased resulting in more fuel being combusted to maintain the same power output. On the other hand, BTE increased with increasing water content. Specifically, P5B15W1 had higher BTE than regular diesel at low engine loads (12 kW and 25 kW-LS). As the engine loads increased, the difference in BTE between blended diesel and petroleum diesel increased with the largest difference being registered for 35kW power output. . In addition, the in-cylinder pressure and heat release rate (HRR) were measured to observe the combustion performance. Compared to the regular diesel, the results show that in-cylinder pressures slightly increased while HRR had longer ignition delay with higher isobutanol and water content.
The last part is exhaust gas analysis. For the two different ratio of blended diesel, P1B19 registered NOx emission reductions factors by about 12 – 35% compared regular diesel due to its low heating value and combustion temperature, while those for P5B15 were reduced 8 – 33% in comparison to regular diesel. For CO and PM emission factors, P5B15 had better performance than P1B19 which showed 13 -37% and 37 – 50% lower than regular diesel, respectively. However, HC emission factors were all greater than those of regular diesel with the highest increaese being from P1B19. P1B19 showed 6 -30% and 3 -10% higher HC emission factor than regular diesel and P5B15, respectively.
When small fractions of water were added into diesel, NOx emission factors decreased with an increase in water content. High latent heat of evaporation of water leads to cooling effect and further causing low combustion temperature. Compared to regular diesel, P5B15W1 had largest reduction which decreased by 21 – 38%. The trends for CO and PM emission factors were similar to those of non-water containing diesel blend. P5B15W1 had largest decrease which showed 5 – 17% and 7 – 26% lower than regular diesel, respectively. Notably, the CO and PM emission factors are all higher than non-water contain blended diesel. As for HC, P5B15W1 increase by 26 – 51%.
Moreover, the total-PAHs emission factors between two different ratios of blended diesel were compared whereby P5B15 had 12 – 22% lower than P1B19. As for water containing blended diesel, total-PAHs emission factor increased with increasing water content which P5B15W1 had 8 – 20% higher total-PAHs emission factors than P5B15W05. Besides, total-BaPeq emission factors are similar to total-PAHs emission which P5B15 had largest reduction by 28 – 44%.
Summary, different isopropanol and isobutanol blended ratio mix with diesel can help BTE increase. Although parts of exhaust gas increase once water is added, they are still lower than regular diesel which reach the purpose of saving energy and carbon reduction.
論文目次 摘要……………………………………………………………………………………...II
ABSTRACT IV
誌謝…………………………………………………………………………………….VII
CONTENTS VIII
LIST OF TABLES IX
LIST OF FIGURES X
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 4
2.1 INTRODUCTION OF DIESEL ENGINE 4
2.2 ORIGINS OF ENVIRONMENTAL PROTECTION 7
2.3 ENVIRONMENTAL PROTECTION EMISSION STANDARDS FOR DIESEL ENGINE 9
2.4 EMISSION OF PAHS 17
2.5 ALTERNATIVE DIESEL FUELS 24
CHAPTER 3 EXPERIMENTAL MATERIAL AND METHODS 29
3.1 PREPARATION OF DIESEL 29
3.2 SAMPLING SYSTEM 31
3.3 PRETREATMENT AND PAHS GC/MS ANALYSIS 38
CHAPTER 4 RESULTS AND DISCUSSION 40
4.1 ENERGY PERFORMANCE BY USING BLENDED DIESEL 40
4.2 NOX EMISSION FACTORS BY USING BLENDED DIESEL 51
4.3 CO EMISSION FACTORS BY USING BLENDED DIESEL 54
4.4 HC EMISSION FACTORS BY USING BLENDED DIESEL 56
4.5 PM EMISSION FACTORS BY USING BLENDED DIESEL 58
4.6 PAHS AND BAPEQ EMISSION FACTORS BY USING BLENDED DIESEL 60
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 64
5.1 CONCLUSION 64
5.2 SUGGESTIONS 66
REFERENCE 67
參考文獻 Al‐Hasan, Mohammad Ibrahim. (2008). The effect of iso‐butanol‐diesel blends on engine performance. Transport (Vilnius, Lithuania), 23(4), 306-310. doi: 10.3846/1648-4142.2008.23.306-310
Al‐Hasan, Mohammad Ibrahim, & Al‐Momany, Muntaser. (2008). The effect of iso‐butanol‐diesel blends on engine performance. Transport, 23(4), 306-310. doi: 10.3846/1648-4142.2008.23.306-310
ATSDR, Agency for Toxic Substances and Disease Registry. (1995). Public Health Statement Polycyclic Aromatic Hydrocarbons. Atlanta, FA: U.S.
Balamurugan, T., & Nalini, R. (2014). Effect of Blending Alcohol with Diesel on Performance, Combustion and Emission Characteristics of Four Stroke Diesel Engine– An Experimental Study. International Journal of ChemTech Research, Volume 6(No. 1), pp 750-762.
Barfknecht, Thomas R. (1983). Toxicology of soot. Prog. Energy. Combust. Sci., 9, 199-237.
Becher, Georg, & Bjørseth, Alf. (1983). Determination of exposure to polycyclic aromatic hydrocarbons by analysis of human urine. Cancer Letters, 17(3), 301-311.
Becher, Georg, Haugen, Aage, & Bjørseth, Alf. (1984). Multimethod determination of occupational exposure to polycyclic aromatic hydrocarbons in an aluminum plant. Carcinogenesis, 5, 647-651. doi: 10.1093/carcin/5.5.647
Bozbas, Kahraman. (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable Sustainable Energy Rev., 12(2), 542-552. doi: 10.1016/j.rser.2005.06.001
Campos-Fernández, Javier, Arnal, Juan M., Gómez, Jose, & Dorado, M. Pilar. (2012). A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Appl. Energy, 95, 267-275. doi: 10.1016/j.apenergy.2012.02.051
Chang, Yu-Cheng, Lee, Wen-Jhy, Lin, Sheng-Lun, & Wang, Lin-Chi. (2013). Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines. Appl. Energy, 109, 182-191. doi: 10.1016/j.apenergy.2013.03.086
Chang, Yu-Cheng, Lee, Wen-Jhy, Wu, Tser Son, Wu, Chang-Yu, & Chen, Shui-Jen. (2014). Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel. Energy, 64, 678-687. doi: 10.1016/j.energy.2013.10.077
Chen, J. W., Wang, S. L., Hsieh, D. P., Yang, H. H., & Lee, H. L. (2012). Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ, 417-418, 68-75. doi: 10.1016/j.scitotenv.2011.12.012
Chen, Jia Mei. (2011). Special Implementation Project for New Diesel Vehicle Model Certification, Conformity of Production Auditing and the Surveillance Test of Vehicle Recall and Correction. Taiwan: Automotoive Research and Testing Center.
Crepeaux, G., Bouillaud-Kremarik, P., Sikhayeva, N., Rychen, G., Soulimani, R., & Schroeder, H. (2012). Late effects of a perinatal exposure to a 16 PAH mixture: Increase of anxiety-related behaviours and decrease of regional brain metabolism in adult male rats. Toxicol Lett, 211(2), 105-113. doi: 10.1016/j.toxlet.2012.03.005
Cui, Xiaoqi, Helmantel, Arjan, Golovichev, Valeri, & Denbratt, Ingemar. (2009). Combustion and Emissions in a Light-Duty Diesel Engine Using Diesel-Water Emulsion and Diesel-Ethanol Blends. http://dx.doi.org/10.4271/2009-01-2695
Diesel, Rudolf. (1892).
Doğan, Oğuzhan. (2011). The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel, 90(7), 2467-2472. doi: http://dx.doi.org/10.1016/j.fuel.2011.02.033
Dusséaux, Simon, Croux, Christian, Soucaille, Philippe, & Meynial-Salles, Isabelle. (2013). Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab. Eng., 18(0), 1-8. doi: http://dx.doi.org/10.1016/j.ymben.2013.03.003
EB. (2014). Diesel Engine. from http://www.britannica.com/EBchecked/topic/162716/diesel-engine/45706/Two-stroke-and-four-stroke-engines
EUEPA. (2014). EU Emission Standards for Heavy-Duty Diesel and Gas Engines.
Gertler, Alan W., Sagebiel, John C., Dippel, William A., & Farina, Robert J. (1998). Measurements of Dioxin and Furan Emission Factors from Heavy-Duty Diesel Vehicles. Journal of the Air & Waste Management Association, 48(3), 276-278. doi: 10.1080/10473289.1998.10463677
Gong, J., Zhang, Y., Tang, Chenglong., & Huang, Z. (2014). EMISSION CHARACTERISTICS OF ISO-PROPANOL/GASOLINE BLENDS IN A SPARK-IGNITION ENGINE COMBINED WITH EXHAUST GAS RE-CIRCULATION. Thermal Science, Volume 18(No.1), pp. 269-277.
Goodger, E. M. (1980). Alternatice fuels Macmillan.
Greeves, G., Khan, I.M., & Onion, G. (1977). Effects of water introduction on diesel engine combustion and emissions. Symp. (Int.) Combust., Volume 16(1), 321-336. doi: 10.1016/S0082-0784(77)80335-4
Hagos, F. Y., Aziz, A. R. A., & Tan, I. M. (2011, 27-29 May 2011). Water-in-diesel emulsion and its micro-explosion phenomenon-review. Paper presented at the Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on.
Hansen, A. C., Zhang, Q., & Lyne, P. W. (2005). Ethanol-diesel fuel blends -- a review. Bioresour Technol, 96(3), 277-285. doi: 10.1016/j.biortech.2004.04.007
Heywood, John B. (1988). Internal Combustion Engine Fundamentals McGraw-Hill Science/Engineering/Math; 1 edition (April 1, 1988).
Hirokawa, Yasutaka, Suzuki, Iwane, & Hanai, Taizo. (2015). Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J. Biosci. Bioeng.(0). doi: http://dx.doi.org/10.1016/j.jbiosc.2014.10.005
Ithnin, Ahmad Muhsin, Noge, Hirofumi, Abdul Kadir, Hasannuddin, & Jazair, Wira. (2014). An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study. Journal of the Energy Institute. doi: 10.1016/j.joei.2014.04.002
Jedrychowski, W. A., Perera, F. P., Tang, D., Rauh, V., Majewska, R., Mroz, E., . . . Jacek, R. (2013). The relationship between prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts in cord blood. J Expo Sci Environ Epidemiol, 23(4), 371-377. doi: 10.1038/jes.2012.117
Jung, K. H., Perzanowski, M., Rundle, A., Moors, K., Yan, B., Chillrud, S. N., . . . Miller, R. L. (2014). Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environ Res, 128, 35-41. doi: 10.1016/j.envres.2013.12.002
Kadota, T., & Yamasaki, H. (2002). Recent advances in the combustion of water fuel emulsion. Prog. Energy Combust. Sci., 28(5), 385-404. doi: http://dx.doi.org/10.1016/S0360-1285(02)00005-9
Kannan, K, & Udayakumar, M. (2009). NOx and HC emission control using water emulsified diesel in single cylinder diesel engine. Journal ARPN Journal of Engineering and Applied Sciences, 4(8), 59-62.
Karabektas, Murat, & Hosoz, Murat. (2009). Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. Renewable Energy, 34(6), 1554-1559. doi: 10.1016/j.renene.2008.11.003
Kerminen, Veli-Matti, MӒKELӒ, Timo E., Ojanen, Christina H., Hillamo, RISTO E., VILHUNEN, JUHA K., RANTANEN, LEENA, . . . KLOCKOW, DIETER. (1997). Characterization of the Particulate Phase in the Exhaust from a Diesel Car. Environ. Sci, 31, 1883-1889.
Kumar, Satish, Cho, Jae Hyun, Park, Jaedeuk, & Moon, Il. (2013). Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renewable Sustainable Energy Rev., 22(0), 46-72. doi: http://dx.doi.org/10.1016/j.rser.2013.01.017
Kusakabe, Tamami, Tatsuke, Tsuneyuki, Tsuruno, Keigo, Hirokawa, Yasutaka, Atsumi, Shota, Liao, James C., & Hanai, Taizo. (2013). Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng., 20(0), 101-108. doi: http://dx.doi.org/10.1016/j.ymben.2013.09.007
Lapuerta, Magín, Armas, Octavio, & García-Contreras, Reyes. (2009). Effect of Ethanol on Blending Stability and Diesel Engine Emissions. Energy & Fuels, 23(9), 4343-4354. doi: 10.1021/ef900448m
Lapuerta, Magín, Rodríguez-Fernandez, José, García-Contreras, Reyes, & Bogarra, María. (2015). Molecular interactions in blends of alcohols with diesel fuels: Effect on stability and distillation. Fuel, 139(0), 171-179. doi: http://dx.doi.org/10.1016/j.fuel.2014.08.055
Larsen, J.C., Alexander, J., Autrup, H., Barlow, S., Crebelli, R., Gott, D., . . . Yates, D. (2002). Polycyclic Aromatic Hydrocarbons - Occurence in foods, dietary exposure and health effects.
Lee, Wen-Jhy, Liow, Ming-Chu, Tsai, Perng-Jy, & Hsieh, Lien-Te. (2002). Emission of polycyclic aromatic hydrocarbons from medical waste incinerators. Atmos. Environ., 36, 781-790.
Lee, Wen-Jhy, Liu, Yi-Cheng, Mwangi, Francis Kimani, Chen, Wei-Hsin, Lin, Sheng-Lun, Fukushima, Yasuhiro, . . . Wang, Lin-Chi. (2011). Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol–biodiesel–diesel blend of fuels. Energy, 36(9), 5591-5599. doi: 10.1016/j.energy.2011.07.012
Lei, Jilin, Shen, Lizhong, Bi, Yuhua, & Chen, Hong. (2012). A novel emulsifier for ethanol–diesel blends and its effect on performance and emissions of diesel engine. Fuel, 93, 305-311. doi: 10.1016/j.fuel.2011.06.013
Levendis, Yiannis A. (1998). On the Correlation of CO and PAH Emissions from the Combustion of Pulverized Coal and Waste Tires. Environ Sci. Technol., 32(23), 3767-3777. doi: 10.1021/es980399f
Li, Chun-The, Lin, Yuan-Chung, Lee, Wen-Jhy, & Tsai, Perng-Jy. (2003). Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environ. Health Perspect, 111, 483-487. doi: 10.1289/ehp.5518
Lin, Sheng-Lun. (2011). Novel Technologies for Energy Saving and Carbon Reduction by Using both Emulsified-diesel and Emusified-Heavy Fuel Oil. (Doctor of Philosophy), National Cheng Kung University.
Lin, Sheng-Lun, Lee, Wen-Jhy, Lee, Chia-Fon, & Chen, Shui-Jen. (2010). Energy Savings and Emission Reduction of Nitrogen Oxides, Particulate Matter, and Polycyclic Aromatic Hydrocarbons by Adding Water-Containing Acetone and Neat Soybean Oil to a Diesel-Fueled Engine Generator. Energy & Fuels, 24(8), 4522-4533. doi: 10.1021/ef100556b
Lin, Sheng-Lun, Lee, Wen-Jhy, Lee, Chia-fon F., & Wu, Yo-ping. (2012). Reduction in emissions of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbon by adding water-containing butanol into a diesel-fueled engine generator. Fuel, 93, 364-372. doi: 10.1016/j.fuel.2011.11.042
Lyn, W. T. (1963). Study of burning rate and nature of combustion in diesel engines. Symp. (Int.) Combust., 9(1), 1069-1082. doi: http://dx.doi.org/10.1016/S0082-0784(63)80112-5
Lyyränen, Jussi, Jokiniemi, Jorma, & Kauppinen, Esko. (2002). The effect of Mg-based additive on aerosol characteristics in medium-speed diesel engines operating with residual fuel oils. J. Aerosol Sci., 33(7), 967-981. doi: http://dx.doi.org/10.1016/S0021-8502(02)00050-2
Maricq, M. Matti, Chase, Richard E., Xu, Ning, & Laing, Paul M. (2002). The Effects of the Catalytic Converter and Fuel Sulfur Level on Motor Vehicle Particulate Matter Emissions:  Light Duty Diesel Vehicles. Environ Sci. Technol., 36(2), 283-289. doi: 10.1021/es010962l
Masclet, P., Mouvier, G., & Nikolaou, K. (1986). Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmos. Environ., 20, 439-446.
McDonald, Jacob D., Zielinska, Barbara, Fujita, Eric M., Sagebiel, John C., Chow, Judith C., & Watson, John G. (2003). Emissions from Charbroiling and Grilling of Chicken and Beef. Journal of the Air & Waste Management Association, 53(2), 185-194. doi: 10.1080/10473289.2003.10466141
Mi, Hsiao-Hsuan, Chiang, Chow-Feng, Lai, Ching-Cheng, Wang, Lin-Chi, & Yang, Hsi-Hsien. (2001). Comparsion of PAH emission from a Municipal Waste Incinerator and Mobile Source. Aerosol Air Qual. Res., 1, 83-90.
Mi, Hsiao-Hsuan, Lee, Wen-Jhy, Chen, Chung-Ban, Yang, Hsi-Hsien, & Wu, Sheng-Jong. (2000). Effect of fuel aromatic content on PAH emission from a heavy-duty diesel engine. Chemosphere, 41(11), 1783-1790.
Mitra, Siddhartha, Kimmel, David G., Snyder, Jessica, Scalise, Kimberly, McGlaughon, Benjamin D., Roman, Michael R., . . . Campbell, Pamela L. (2012). Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico. Geophys. Res. Lett., 39(1), n/a-n/a. doi: 10.1029/2011gl049505
Mohammadi, Pouya, Nikbakht, Ali M., Tabatabaei, Meisam, Farhadi, Khalil, Mohebbi, Arash, & Khatami far, Mehdi. (2012). Experimental investigation of performance and emission characteristics of DI diesel engine fueled with polymer waste dissolved in biodiesel-blended diesel fuel. Energy, 46(1), 596-605. doi: 10.1016/j.energy.2012.07.049
NOAA. (2014). The NOAA Annual Greenhouse Gas Index (AGGI). from http://www.esrl.noaa.gov/gmd/ccgg/aggi.html
Özcan, Hakan, & Söylemez, M. S. (2005). Experimental Investigation of the Effects of Water Addition on the Exhaust Emissions of a Naturally Aspirated, Liquefied-Petroleum-Gas-Fueled Engine. Energy & Fuels, 19(4), 1468-1472. doi: 10.1021/ef049850g
Perera, F., Li, T. Y., Lin, C., & Tang, D. (2012). Effects of prenatal polycyclic aromatic hydrocarbon exposure and environmental tobacco smoke on child IQ in a Chinese cohort. Environ Res, 114, 40-46. doi: 10.1016/j.envres.2011.12.011
Perera, Frederica P., Tang, Deliang, Wang, Shuang, Vishnevetsky, Julia, Zhang, Bingzhi, Diaz, Diurka, . . . Rauh, Virginia. (2012). Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect, 120(6), 921-926.
Rakopoulos, D. C., Rakopoulos, C. D., Hountalas, D. T., Kakaras, E. C., Giakoumis, E. G., & Papagiannakis, R. G. (2010). Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends. Fuel, 89(10), 2781-2790. doi: 10.1016/j.fuel.2010.03.047
Rakopoulos, D. C., Rakopoulos, C. D., Papagiannakis, R. G., & Kyritsis, D. C. (2011). Combustion heat release analysis of ethanol or n-butanol diesel fuel blends in heavy-duty DI diesel engine. Fuel, 90(5), 1855-1867. doi: http://dx.doi.org/10.1016/j.fuel.2010.12.003
Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., & Kyritsis, D.C. (2010). Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers. Manage., 51(10), 1989-1997. doi: 10.1016/j.enconman.2010.02.032
Ren, Yi, Huang, Zuohua, Miao, Haiyan, Di, Yage, Jiang, Deming, Zeng, Ke, . . . Wang, Xibin. (2008). Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends. Fuel, 87(12), 2691-2697. doi: 10.1016/j.fuel.2008.02.017
Saeed, M. N., & Henein, MN.A. (1989). Combustion Phenomena of Alcohols in C.I. Engine. J. Eng. Gas Turbines Power, 111, 439-444.
Sahagun, Louis. (2014). Toxins released by oil spills send fish hearts into cardiac arrest. from http://www.latimes.com/science/sciencenow/la-sci-sn-tuna-hearts-oil-spill-toxins-20140213-story.html#ixzz2tbQVLgxI
Saunders, C. R., Das, S. K., Ramesh, A., Shockley, D. C., & Mukherjee, S. (2006). Benzo(a)pyrene-induced acute neurotoxicity in the F-344 rat: role of oxidative stress. J Appl Toxicol, 26(5), 427-438. doi: 10.1002/jat.1157
Saunders, Crystal R., Ramesh, Aramandle, & Shockley, Dolores C. (2002). Modulation of neurotoxic behavior in F-344 rats by temporal disposition of benzo(a)pyrene. Toxicol Lett, 33-45.
Saunders, Crystal R., Shockley, Dolores C., & Knuckles, Maurice E. (2001). Behavioral Effects Induced by Acute Exposure to Benzo(a)pyrene in F-344 Rats. Neurotoxicity Research, 3, 557-579.
Takaishi, Tatsuo, Numata, Akira, Nakano, Ryouji, & Sakaguchi, Katsuhiko. (2008). Approach to High Efficiency. Technical Review, 45.
Tsai, J. H., Chen, S. J., Huang, K. L., Lin, W. Y., Lee, W. J., Lin, C. C., . . . Kuo, W. C. (2014). Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: analyses of emitted PM, particulate carbon, and PAHs. Sci Total Environ, 466-467, 195-202. doi: 10.1016/j.scitotenv.2013.07.025
TWEPA. (2014). 交通工具空氣污染物排放標準. Taiwan.
KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE (1998).
USEPA. (2014). Heavy Duty Highway Compression-Ignition Engines And Urban Buses -- Exhaust Emission Standards.
Vogt, R., Kirchner, U., Scheer, V., Hinz, K. P., Trimborn, A., & Spengler, B. (2003). Identification of diesel exhaust particles at an Autobahn, urban and rural location using single-particle mass spectrometry. J. Aerosol Sci., 34(3), 319-337. doi: http://dx.doi.org/10.1016/S0021-8502(02)00179-9
Wang, Wei-Ning. (2014). Comparison of CO2 Photoreduction Systems: A Review. Aerosol Air Qual. Res. doi: 10.4209/aaqr.2013.09.0283
Yahaya Khan, M., Abdul Karim, Z. A., Hagos, F. Y., Aziz, A. R., & Tan, I. M. (2014). Current trends in water-in-diesel emulsion as a fuel. ScientificWorldJournal, 2014, 527472. doi: 10.1155/2014/527472
Yang, Hsi-Hsien, Lee, Wen-Jhy, Chen, Shui-Jen, & Laia, Soon-Onn. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174.
Yoshimoto, Yasufumi, Onodera, Masayuki, & Tamaki, Hiroya. (1999). Reduction of Nox, Smoke, and BSFC in a Diesel Engine Fueled by Biodiesel Emulsion with Used Frying Oil. http://dx.doi.org/10.4271/1999-01-3598
Zhou, M., & Rhue, R. D. (2000). Effect of Interfacial Alcohol Concentrations on Oil Solubilization by Sodium Dodecyl Sulfate Micelles. J Colloid Interface Sci, 228(1), 18-23. doi: 10.1006/jcis.2000.6924
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw