進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1901201217042200
論文名稱(中文) 網路銀行服務技術之顧客採用之前提
論文名稱(英文) The Antecedents of Consumer Adoption of the Internet Banking Service Technology
校院名稱 成功大學
系所名稱(中) 國際經營管理研究所碩士在職專班
系所名稱(英) Institute of International Management (IIMBA--Master)(on the job class)
學年度 100
學期 1
出版年 100
研究生(中文) 鄭國志
研究生(英文) Kuo-Chih Cheng
學號 ra794412
學位類別 碩士
語文別 英文
論文頁數 73頁
口試委員 指導教授-陳永信
口試委員-鄭至甫
口試委員-林豪傑
中文關鍵字 資訊系統性能  系統品質  資訊品質  系統支援品質  易用性觀感  有益性觀感  客戶滿意度  重覆使用意願 
英文關鍵字 IS performance  System quality  Information quality  System support service quality  Perceived ease of use  Perceived usefulness  Customer satisfaction  Re-use intention 
學科別分類
中文摘要 科技接受模式 (TAM) 至今仍然吸引很多網路零售業者以及學術界的注意在探索客戶經驗的各式各樣的研究領域中. 然而在很多前提或科技接受模式的外部變數中皆還有很多尚未被發掘的部分, 尤其是在網路銀行的部分只有少數被測試過而已. 以上所提到的為此研究之動機. 此研究將資訊系統功能設定為一獨立變數然後展開與科技接受模式結合來預測消費者在使用網路銀行之行為. 此研究利用網路問卷方式來詢問收集在台灣曾經有使用過網路銀行的消費者意見, 其中包含國內及國外之銀行在台灣的客戶. 最後一共收集到404份的有效問卷來做進一步的分析. 此研究利用結構方程模式 (SEM) 來分析資料問卷, 結果顯示此研究中的所有假設之理論皆成立, 其中包含資訊系統性能對於科技接受模式中的有益性感觀和易用性觀感兩者皆有很重要的正向的影響. 除此之外, 此研究在實際上也測試了科技接受模式的實用性以及它對於消費者對於網路銀行的科技接受行為之解釋. 最後, 在理論及管理方面的解釋亦在此研究的最後章節中有所討論.
英文摘要 The technology acceptance model (TAM) still draws much attention to both e-retailers and academicians in the course of exploring customers’ experiences within a variety of research contexts. However, much antecedents or external variables of TAM framework have not been universally explored yet, especially in the Internet banking context and only few studies have been examined. This motivates the research conducted in this study. This study takes Information System (IS) performance as a key independent variable to extend the TAM to predict customers’ adoption within the context of Internet banking service transactions. Online approach was designed to send the questionnaires to Taiwanese customers who have experiences of using the Internet banking offered by both local and foreign banks in Taiwan. A total of 404 validated respondents were collected for analyses. Structural equation modeling (SEM) is the method for data analysis. The results showed that all the hypotheses were well-supported, indicating that IS performance has a significant positive influence on perceived usefulness and perceived ease of use. In addition, this study empirically tests the robustness of TAM, explaining technology acceptance behavior for customer about Internet banking. Theoretical and managerial implications of this study are also discussed.
論文目次 ACKNOWLEGEMENT I
ABSTRACT II
摘要 III
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VII
CHAPTER ONE INTRODUCTION 1
1.1 Research Background and Motivation. 1
1.2. Research Objectives and Expected Contributions. 5
1.3 Research Procedures. 6
1.4 Research Structure. 7
CHAPTER TWO LITERATURE REVIEW 9
2.1 Definition of Research Constructs. 9
2.1.1 IS Performance (ISP). 9
2.1.2 Technology Acceptance Model (TAM). 10
2.1.3 IS Success Models. 12
2.1.4 Customer Satisfaction (CS). 15
2.1.5 Re-use Intention (RI). 16
2.2 Hypotheses Development. 16
2.2.1 The Influence of IS Performance on Perceived Ease of Use and Perceived Usefulness. 16
2.2.2 The Influence of the Relationship among Perceived Ease of Use, Perceived Usefulness, and Re-use Intention. 18
2.2.3 The Influence of Perceived Ease of Use on Customer Satisfaction. 21
2.2.4 The Influence of Perceived Usefulness on Customer Satisfaction. 21
2.2.5 The Influence of Customer Satisfaction on Re-use Intention. 22
CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 24
3.1 The Research Model. 24
3.2 The Construct Measurement Procedures. 25
3.2.1 IS Performance. 25
3.2.2 Perceived Ease of Use (PEU). 26
3.2.3 Perceived of Usefulness (PU). 26
3.2.4 Re-use Intention (RI). 27
3.2.5 Customer Satisfaction (CS). 27
3.2.6 The Information of Respondents. 28
3.3 The Hypothesis to Be Tested. 28
3.4 Questionnaire. 28
3.5 Sampling Plan. 29
3.6 The Data Analysis Procedure. 29
3.6.1 Descriptive Statistical Analyses. 29
3.6.2 Confirmatory Factor Analysis (CFA). 29
3.6.3 Structural Equation Modeling (SEM). 30
CHAPTER FOUR DATA ANALYSES AND RESULTS 31
4.1 Characteristics of the Respondents. 31
4.2 Descriptive Statistical Analyses. 33
4.3 Confirmatory Factor Analysis (CFA). 35
4.4 Structural Equation Modeling (SEM). 43
4.5 Mediating Effects. 43
CHAPTER FIVE RESEARCH CONCLUSIONS AND SUGGESTIONS 47
5.1 Discussion and Conclusions. 47
5.2 Managerial Implications. 48
5.3 Limitations and Further Research. 50
REFERENCES 52
APPENDICES 59
Appendix 1: The Results of CFA and SEM. 59
Appendix 2: Questionnaire Design. 66
參考文獻 Al-maghrabi, T., Dennis, C., & Halliday, S. V. (2011). Antecedents of continuance intentions towards e-shopping: The case of Saudi Arabia. Journal of Enterprise Information Management, 24(1), 85-111.
Alsajjan, B., & Dennis, C. (2010). Internet banking acceptance model: Cross-market examination. Journal of Business Research, 63(9-10), 957-963.
Amoako-Gyampah, K. (2007). Perceived usefulness, user involvement and behavioral intention: An empirical study of ERP implementation. Computers in Human Behavior, 23(3), 1232-1248.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Andreassen, T. W., & Lindestad, B. (1998). Customer loyalty and complex service: The impact of corporate imange on quality, customer satisfaction and loyalty for customers with varying degree of service expertise. International Journal of Service Industry Management, 9(1), 7-23.
Anh, T., Ryu, S., & Han, I. (2007). The impact of web quality and playfulness on user acceptance of online retailing. Information & Management, 44, 263-275.
Au, N., Ngai, E. W. T., & Cheng, T. C. E. (2008). Extending the understanding of end user information systems satisfaction formation: An equitable needs fulfillment model approach. MIS Quarterly, 32(1), 43-66.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
Bitner, M. J., Ostrom, A. L., & Meuter, M. L. (2002). Implementing successful self-service technologies. Academy of Management Executive, 16(4), 96-109.
Bowerman, B. L., O'Connell, R. T., & Orris, J. B. (2004). Essential business statistics (3rd ed.). New York: McGrawHill.
Bruner, I. G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld internet devices. Journal of Business Research, 58(5), 553-558.
Chen, L. D., & Tan, J. (2004). Technology adaptation in e-commerce: Key determinants of virtual store acceptance. European Management Journal, 22(1), 74-86.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 318-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theorical models. Management Science, 35(8), 982-1003.
DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95.
DeLone, W. H., & McLean, E. R. (2004). Measuring e-commerce success: Applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31-47.
Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C channel satisfaction and preference: Validating e-commerce metrics. Information Systems Research, 13(3), 316-333.
Eriksson, K., & Nilsson, D. (2007). Determinants of the continued use of self-service technology: The case of Internet banking. Technovation, 27(4), 159-167.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error Journal of Marketing Research, 18 (1), 39-50.
Gefen, D., Straub, D. W., & Boudreau, M.-C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(7), 2-76.
Gerbing, D. W., & Anderson, J. C. (1988). An updated paradigm for scale development incorporating unidimensionality and its assessment. Journal of Marketing Research, 25(2), 186-192.
Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571.
Hair, J., Black, W., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). New Jersey: Prentice Hall.
Hayashi, A., Chen, C., Ryan, T., & Wu, J. (2004). The role of social presence and moderating role of computer self efficacy in predicting the continuance usage of e-learning systems. Journal of Information Systems Education, 15(2), 139-154.
Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.
Hsu, C. L., & Lu, H. P. (2004). Why do people play online game? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868.
Iivari, J. (2005). An empirical test of the DeLone-McLean model of information system success. The Database for Advances in Information System, 36(2), 8-27.
Im, I., Kim, Y., & Han, H.-J. (2008). The effects of perceived risk and technology type on users' acceptance of technologies. Information & Management, 45(1), 1-9.
Jashapara, A., & Tai, W.-C. (2011). Knowledge mobilization through e-learning systems: Understanding the mediating roles of self-efficacy and anxiety on perceptions of ease of use. Information Systems Management, 28(1), 71-83.
Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User's reference guide. Chicago, IL: Scientific Software.
Kim, H.-W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly, 33(3), 567-582.
Kim, M.-J., Chung, N., & Lee, C.-K. (2011). The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tourism Management, 32(2), 256-265.
Kim, S. H. (2008). Moderating effects of job relevance and experience on mobile wireless technology acceptance: Adoption of a smartphone by individuals. Information & Management, 45(6), 387-393.
Kim, S. S., & Son, J.-Y. (2009). Out of dedication or constraint? A dual model of post-adoption phenomena and its empirical test in the context of online services. MIS Quarterly, 33(1), 49-70.
Kotler, P., & Keller, K. L. (2006). Marketing management (12th ed.). New Jersey: Prentice Hall.
Koufteros, X., Babbar, S., & Kaighobadi, M. (2009). A paradigm for examining second-order factor models employing structural equation modeling. International Journal of Production Economics, 120(2), 633-652.
Lai, V. S., & Li, H. (2005). Technology acceptance model for Internet banking: An invariance analysis. Information & Management, 42(2), 373-386.
Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), 269-282.
Liao, C. H., & Tsou, C. W. (2009). User acceptance of computer-mediated communication: The SkypeOut case Expert Systems with Applications, 36(3), 4595-4603
Lin, H. F. (2007). The role of online and offline feature in sustainding virtual communities: An empierical study. Internet Research, 17(2), 119-138.
Lin, J.-C., & Lu, H. (2000). Toward an understanding of the behavioural intention to use a Web site. International Journal of Information Management 20(3), 197-208.
Lin, J. S. C., & Hsieh, P. L. (2011). Assessing the self-service technology encounters: Development and validation of SSTQUAL Scale. Journal of Retailing, In Press.
Liu , X. (2010). Empirical testing of a theoretical extension of the technology acceptance model: An exploratory study of educational wikis. Communication Education, 59(1), 52-69.
Lu, C. S., Lai, K. h., & Cheng, T. C. E. (2007). Application of structural equation modeling to evaluate the intention of shippers to use Internet services in liner shipping. European Journal of Operational Research, 180(2), 845-867.
Martín, S. S., Camarero, C., & José, R. S. (2011). Does involvement matter in online shopping satisfaction and trust? Psychology and Marketing, 28(2), 145-167.
Mayer, B. L., Kappelman, L. A., & Prybutok, V. R. (1997). A comprehensive model for assessing the quality and productivity of the information systems functions: Toward a theory for information systems assessment. Information Resources Management Journal, 10(1), 6-25.
McKechnie, S., Winklhofer, H., & Ennew, C. (2006). Applying the technology acceptance model to the online retailing of financial services. International Journal of Retail & Distribution Management, 34(4/5), 388-410.
McQuitty, S., Finn, A., & Wiley, J. B. (2000). Systematically varying consumer satisfaction and its implications for product choice. Academy of Marketing Science Review, 10(1), 231-254.
Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review: Information technology and organizational performance: An integrative model of IT business value. MIS Quarterly, 28(2), 283-322.
Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal of Business Research, 56(11), 899-906.
Molla, A., & Licker, P. S. (2001). E-commerce systems success: An attempt to extend and respecify the DeLone and McLean model of IS success. Journal of Electronic Commerce Research, 2(4), 131-141.
Muthitcharoen, A., Palvia, P. C., & Grover, V. (2011). Building a model of technology preference: The case of channel choices. Decision Sciences, 42(1), 205-237.
Oliver, R. L., & DeSarbo, W. S. (1988). Response determinants in satisfaction judgments. Journal of Consumer Research, 14(4), 495-507.
Palou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134.
Parasuraman, A., & Grewal, D. (2000). The impact of technology on the quality-value-loyalty chain: A research agenda. Journal of Academy of Marketing Science, 28(1), 168-174.
Petter, S., & McLean, E. R. (2009). A meta-analytic assessment of the DeLone and McLean IS success model: An examination of IS success at the individual level. Information & Management, 46(3), 159-166.
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903.
Proença, J. F., & Rodrigues, M. A. (2011). A comparison of users and non-users of banking self-service technology in Portugal. Managing Service Quality, 21(2), 192-210.
Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50-69.
Seddon, P., & Kiew, M.-Y. (2007). A partial test and development of DeLone and McLean's model of IS success. Australasian Journal of Information Systems, 4(1), 90-109.
Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240-253.
Thong, J. Y. L., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204
Venkatesh, V., Morris, M. G., Gordon, B. D., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Vlachos, P. A., Giaglis, G., Lee, I., & Vrechopoulos, A. P. (2011). Perceived electronic service quality: Some preliminary results from a cross-national study in mobile Internet services. International Journal of Human-Computer Interaction, 27(3), 217-244.
Walker, R. H., Craig-Lees, M., Hecker, R., & Francis, H. (2002). Technology-enabled service delivery: An investigation of reasons affecting customer adoption and rejection. International Journal of Service Industry Management, 13(1), 91-106.
Wang, Y. S. (2008). Assessing e-commerce systems success: A respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557.
Wang, Y. S., Wang, Y. M., Lin, H. H., & Tang, T. I. (2003). Determinants of user acceptance of Internet banking: An empirical study. International Journal of Service Industry Management, 14(5), 501-519.
Yang, Y., Stafford, T. F., & Gillenson, M. (2011). Satisfaction with employee relationship management systems: The impact of usefulness on systems quality perceptions. European Journal of Information Systems, 20(2), 221-236.
Yi, Y., & La, S. (2004). What influences the relationship between customer satisfaction and repurchase intention? Investigating the effects of adjusted expectations and customer loyalty. Psychology and Marketing, 21(5), 351-373.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw