進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1810201712145200
論文名稱(中文) 整合電動馬達與齒輪減速機之設計
論文名稱(英文) On the Design of Integrated Electric Motors with Gear Mechanisms
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 1
出版年 106
研究生(中文) 陳冠辰
研究生(英文) Guan-Chen Chen
學號 N18011083
學位類別 博士
語文別 英文
論文頁數 124頁
口試委員 指導教授-顏鴻森
召集委員-蔡明祺
口試委員-黃文敏
口試委員-藍兆杰
口試委員-吳益彰
口試委員-王心德
中文關鍵字 電動馬達  齒輪減速機  整合設計  創意性機構設計 
英文關鍵字 Electric motor  Gear train  Integrated design  Creative mechanism design 
學科別分類
中文摘要 現有馬達與齒輪減速機是分別設計與製造後再選配,存在動力傳輸路徑較長、機器組成元件較多、整體安裝空間較大等缺點。本研究提出一套整合設計流程,用以有系統的將電動馬達之電磁場設計與齒輪減速機的運動設計結合。依據電動馬達及齒輪減速機的構造特性與運動原理,歸納設計需求與限制,藉由圖論表示法與創意性機構設計方法,提出整合設計構想。建立一維及二維等效磁路法分析模型,解析整合裝置的電磁特性與輸出性能,並配合有限元素分析進行驗證,其誤差值分別為3.21 %與3.06 %。引入卡特係數建立槽開口與齒型之磁導模型,探討齒輪輪廓對馬達電磁場之影響,結果顯示齒型不影響馬達之磁交鏈、磁通密度、及電磁轉矩。提出齒輪系的設計方法,包含齒形、齒數、齒輪系構形、及齒輪強度分析。最後,分別以現有直流有刷馬達整合行星齒輪減速機,及交流感應馬達整合一般齒輪系為設計實例,有系統完成整合裝置的設計。齒輪強度分析結果顯示,透過矽鋼片堆疊之齒型,可承受之最大應力為312 MPa,齒輪之動態負載,直流有刷馬達為7.94 MPa,交流感應馬達為98.32 MPa,足夠承受傳輸需求。由性能分析結果得知,該整合裝置滿足現有設計的傳動能力,大幅降低直流有刷馬達的頓轉扭矩92.02%及轉矩漣波50.14%,降低交流感應馬達轉矩漣14.23%,且分別提高直流馬達與交流馬達之轉矩密度16.66%與1.75%,改善整合裝置的電磁與輸出特性,其頓轉扭矩、轉矩漣波,及軸向空間的使用,皆較現有設計有更佳的性能表現。
英文摘要 This work presents a novel design procedure for integrating electric motors with gear mechanisms. Based on the configurations of electric motors and the kinematic structure of gear trains, the design requirements and constraints are concluded. By applying the graph representations and creative mechanism design methodology, feasible design concepts are successfully generated systematically. The open-circuit magnetostatic field analysis of a DC commutator motor conducted by applying 1-D and 2-D equivalent magnetic circuit methods are obtained and verified using FEA. The differences in the air-gap flux density are 3.21% and 3.06% for 1-D and 2-D methods, respectively. The Carter’s coefficient is applied to model the permeance of the slot and gear-teeth space. The affection of the integrated gear-teeth on the flux linkage and the first derivative of the flux linkage can be ignored. The design methods for gear trains, gear profiles, number of gear teeth, and gear strength are also introduced. The maximum stress of the gear profile is 312 MPa, and the results show that the gear train can be used for transmission purposes. A DC commutator motor with a planetary gear mechanism and an AC induction motor with an ordinary gear train are applied as examples. A feasible integrated DC commutator motor device is presented that reduces the cogging torque and the torque ripple by 92.02% and 50.14%, respectively, while increasing the torque density by 16.66%. The torque of the AC induction motor is reduced by 8.96%, and the torque ripple is reduced by 14.23%. In addition, the torque density is increased by 1.75%. This indicates that the integrated devices provide more stable and efficiency output torque than the existing design.
論文目次 摘要 I
Abstract II
Acknowledgements III
List of Tables VII
List of Figures IX
Nomenclature XII
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Literature review 6
1-2-1 Motor design and electromagnetic field analysis 6
1-2-2 Gear train design 8
1-2-3 Integrated device design 8
1-3 Objectives 10
1-4 Dissertation organization 11
Chapter 2 Conceptual Design 13
2-1 Electric motors 13
2-2 Gear trains 18
2-3 Integrated design concepts 22
2-4 Summary 25
Chapter 3 Design Procedure 27
3-1 Design procedure 27
3-2 Creative design methodology 31
3-2-1 Graph representations 31
3-2-2 Creative design methodology 33
3-3 Summary 39
Chapter 4 Magnetostatics Analysis 40
4-1 1-D method 40
4-2 2-D method 47
4-3 FEA method 53
4-4 Optimal design 61
4-5 Summary 63
Chapter 5 Gear Train Design 65
5-1 Gear teeth design 65
5-2 Speed ratio design 67
5-3 Strength analysis of gear profiles 69
5-4 Summary 74
Chapter 6 Effects of Integrated Gear Teeth 75
6-1 Flux linkage analysis 75
6-2 Cogging torque analysis 76
6-3 Electromagnetic torque and torque ripple analyses 82
6-4 Summary 84
Chapter 7 Design Examples 85
7-1 Design example 1 85
7-2 Design example 2 97
7-3 Summary 104
Chapter 8 Conclusions and Suggestions 105
8-1 Conclusions 105
8-2 Suggestions 108
References 110
Copyright 124

參考文獻 [1] 許正和,2002,機構構造設計學,高立圖書有限公司,台北,台灣。
[2] 賴介村,梁嘉生,1994,電動輪圈馬達傳動裝置,中華民國專利第244,042號。
[3] 蕭雲隆,1996,輪圈馬達改良構造,中華民國專利第300,682號。
[4] 許俊甫,2001,內齒輪外旋轉之輪鼓式馬達,中華民國專利第501,330號。
[5] 亞伯特.帕米羅,2002,具有內齒輪系的低度輪廓馬達,中華民國專利第556,394號。
[6] 武智哲雄,2005,電動車椅的驅動裝置所使用的齒輪馬達,中華民國專利第I238,226號。
[7] 河野功,倡原功,2009,小齒輪一體型馬達及門開閉用戟齒輪馬達,中華民國專利第I305,972號。
[8] Fukui, K., 1986, Geared Motor, U. S. Patent No. 4,626,722.
[9] Kondoh, M. and Minegishi, K., 1996, Low Speed Geared Motor, U. S. Patent No. 5,497,041.
[10] Kinoshita, S. and Sakagami, K., 2000, Geared Motor, U. S. Patent No. 6,031,308.
[11] Minegishi, K. and Tamenaga, J., 2002, Geared Motor and Geared Motor Series, U. S. Patent No. 6,485,394.
[12] Torii, K., Adachi, T., Sakai, H., and Omori, S., 2003, Geared Motor Having Worm Wheel Drivingly Connected to Output Shaft, U. S. Patent No. 6,591,707.
[13] Nagai, A. and Agematsu, I., 2004, Geared Motor, U. S. Patent No. 6,745,639.
[14] Saito, T. and Katoh, M., 2004, Starter Motor Having Planetary Gear Device for Reducing Rotational Speed of Electric Motor, U. S. Patent No. 6,782,770.
[15] Michael, C., Heinrich, Z., and Ju, K., 2007, Planetary Gear, Gear Motor and Series of Gear Motors, U. S. Patent No. 7,182,709.
[16] Kovach, J. A., Furches, L. K., Kimpel, R. D., Zhang, H., Collett, R. E., and Martinelli, L. A., 2008, Multiple Gear Motor Drive, U. S. Patent No. US2008/0113838.
[17] Chang, D. S., 2009, Modular Gear Train Mechanism with an Internal Motor, U. S. Patent No. US2009/0227412.
[18] Saya, T., 2009, Motor with Reduction Gear, European Patent No. EP 2,103,842.
[19] Oriental Motor General Catalogue, 2008, Oriental Motor Co., Tokyo, Japan.
[20] 旋轉馬達技術手冊,2008,大銀微系統股份有限公司,台中,台灣。
[21] DC直流無刷馬達綜合型錄,2009,泰映科技股份有限公司,台北,台灣。
[22] Davis, R. I. and Lorenz, R. D., 2003, “Engine Torque Ripple Cancellation with an Integrated Starter Alternator in a Hybrid Electric Vehicle: Implementation and Control,” IEEE Transactions on Industry Applications, Vol. 39, No. 6, pp. 1765-1774.
[23] Fahimi, B., Emadi, A., and Sepe, R. B., 2004, “A Switched Reluctance Machine-Based Starter/Alternator for More Electric Cars,” IEEE Transactions on Energy Conversion, Vol. 19, No. 1, pp. 116-124.
[24] NAFTC eNews, 2005, “Integrated Starter-Generator,” https://goo.gl/XgEs6x
[25] Electric Coolant Pump Catalogue, 2009, Pierburg Pump Co., Neuss, Germany.
[26] Suzuki, K., Inaguma, Y., Haga, K., and Nakayama, T., 1995, “Integrated Electro-Hydraulic Power Steeling System with Low Electric Energy Consumption,” Society of Automotive Engineers, Paper No. 950580, pp. 948-954.
[27] Cho, C. P., Fussell, B. K., and Hung, J. Y., 1996, “A Novel Integrated Electric Motor/Pump for Underwater Applications,” Journal of Applied Physics, Vol. 79, No. 8, pp. 5548-5550.
[28] Miller, T. J. E. and Hendershot, Jr., J. R., 1994, Design of Brushless Permanent Magnet Motors, Clarendon Press, Oxford, UK.
[29] Hanselman, D. C., 2003, Brushless Permanent-Magnet Motor Design, 2nd edition, The Writers’ Collective, Cranston, Rhode Island, USA.
[30] 秋山勇治、萩野弘司,1990.12,無刷直流馬達的設計及應用,中國生產力中心小型馬達設計開發講座,台北,台灣。
[31] 唐任遠,1997,現代永磁電機理論與設計,機械工業出版社,北京,中國。
[32] Qu, R. and Lipo, T. A., 2004, “Analysis and Modeling of Air-Gap and Zigzag Leakage Fluxes in a Surface-Mounted Permanent-Magnet Machine,” IEEE Transactions on Industry Applications, Vol. 40, No. 1, pp. 121-127.
[33] Yang, Y. P., Luh, Y. P., and Cheung, C. H., 2004, "Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles-Part I:Multi-Objective Optimal Design and Analysis," IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1873-1882.
[34] Hwang, C. C. and Cho, Y. H., 2001, “Effects of Leakage Flux on Magnetic Fields of Interior Permanent Magnet Synchronous Motors,” IEEE Transactions on Magnetics, Vol. 37, No. 4, pp. 3021-3024.
[35] Hwang, C. C., Chang, S. M., Pan, C. T., and Chang, T. Y., 2002, “Estimation of Parameters of Interior Permanent Magnet Synchronous Motors,” Journal of Magnetism and Magnetic Materials, Vol. 239, pp. 600-603.
[36] Tsai, W. B. and Chang, T. Y., 1996, “Magnetic Modeling of Brushless Permanent Magnet Motors with Embedded Magnets,” Proceedings of the 17th Symposium on Electrical Power Engineering, Hsinchu, Taiwan, pp. 752-756.
[37] 鄒繼斌、劉寶廷、崔淑梅、鄭萍,1998年,磁路與磁場,哈爾濱工業大學出版社,哈爾濱,中國。
[38] Huang, C. C. and Tsai, M. C., 2001, “A Novel Two-phases Spindles Motor for DVD Applications”, IEEE Transactions On Magnetics, vol. 37, pp. 3825~3820.
[39] Momen, M. F. and Datta, S., 2009 , “Analysis of Flux Leakage in a Segmented Core Brushless Permanent Magnet Motor,” IEEE Transactions on Energy Conversion, Vol. 24 , No. 1 , pp. 77-81.
[40] Hsu, L. Y., Tsai, M. C., and Huang, C. C., 2003, “Efficiency Optimization of Brushless Permanent Magnet Motors Using Penalty Genetic Algorithms,” IEEE International Electric Machines and Drives Conference (IEMDC), Madison WI, USA.
[41] Hsu, L. Y. and Tsai, M. C., 2004, “Tooth Shape Optimization of Brushless Permanent Magnet Motors for Reducing Torque Ripples,” Journal of Magnetism and Magnetic Materials, Vol. 282, pp. 193-197.
[42] Hauge, B., 1962, The Principles of Electromagnetism Applied to Electrical Machines, Dover, New York, USA.
[43] Boules, N., 1985, “Prediction of No-Load Flux Density Distribution in Permanent Magnet Machines,” IEEE Transactions on Industry Applications, Vol. 21, No. 4, pp. 633-642.
[44] Rasmussen, K. F., Davies, J. H., Miller, T. J. E., McGilp, M. I., and Olaru, M., 2000, “Analytical and Numerical Computation of Air-Gap Magnetic Fields in Brushless Motors with Surface Permanent Magnets,” IEEE Transactions on Industry Applications, Vol. 36, No. 6, pp. 1547-1554.
[45] Kumar, P. and Bauer, P., 2008, “Improved Analytical Model of a Permanent-Magnet Brushless DC Motor,” IEEE Transactions on Magnetics, Vol. 44, No. 10, pp. 2299-2309.
[46] Jian, L., Chau, K. T., Gong, Y., Yu, C., and Li, W., 2009 , “Analytical Calculation of Magnetic Field in Surface-Inset Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol.45, No. 10, pp. 4688-4691.
[47] Liu, Z. J. and Li, J. T., 2008,“ Accurate Prediction of Magnetic Field and Magnetic Forces in Permanent Magnet Motors Using an Analytical Solution,” IEEE Transactions on Energy Conversion, Vol. 23, No. 3, pp. 717-726.
[48] Markovic, M. and Perriard, Y., 2009, “Optimization Design of a Segmented Halbach Permanent-Magnet Motor Using an Analytical Model,” IEEE Transactions on Magnetics, Vol. 45, No. 7, pp. 2955-2960.
[49] Zhu, Z. Q., Howe, D., Bolte, E., and Ackermann, B., 1993, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part I: Open-Circuit Field,” IEEE Transactions on Magnetics, Vol. 29, No. 1, pp. 124-135.
[50] Zhu, Z. Q. and Howe, D., 1993, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part II: Armature-Reaction Field,” IEEE Transactions on Magnetics, Vol. 29, No. 1, pp. 136-142.
[51] Zhu, Z. Q. and Howe, D., 1993, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part III: Effect of Stator Slotting,” IEEE Transactions on Magnetics, Vol. 29, No. 1, pp. 143-151.
[52] Zhu, Z. Q., Howe, D., and Xia, Z. P., 1994, “Prediction of Open-Circuit Airgap Field Distribution in Brushless Machines Having an Inset Permanent Magnet Rotor Topology,” IEEE Transactions on Magnetics, Vol. 30, No. 1, pp. 98-107.
[53] Zhu, Z. Q., Howe, D., and Chan, C. C., 2002, “Improved Analytical Model for Predicting the Magnetic Field Distribution in Brushless Permanent-Magnet Machines,” IEEE Transactions on Magnetics, Vol. 38, No. 1, pp. 229-238.
[54] Atallah, K., Calverley, S. D., and Howe, D, 2004, “Design, Analysis, and Realization of a High-Performance Magnetic Gear,” IEE Proceedings B Electric Power Applications, Vol. 151, No. 2, pp. 135-143.
[55] Lee, K. S., Debortoil, M. J., Lee, M. J., and Salon, S. J., 1991, “Coupling Finite Elements and Analytical Solution in the Airgap of Electric Machines,” IEEE Transactions on Magnetics, Vol. 27, No. 5, pp. 3955-3957.
[56] Mizutani, R. and Matsui, N., 2000, “Design and Analysis of Low-Speed, High-Torque Permanent Magnet Motors,” Electrical Engineering in Japan, Vol. 132, No. 3, pp. 48-56.
[57] Kim, T. H., Choi, J. H., Ko, K. C., and Lee, J., 2003, “Finite-Element Analysis of Brushless DC Motor Considering Freewheeling Diodes and DC Link Voltage Ripple,” IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3274-3276.
[58] Ohnishi, T. and Takahashi, N., 2000, “Optimal Design of Efficient IPM Motor Using Finite Element Method,” IEEE Transactions on Magnetics, Vol. 36, No. 5, pp. 3537-3539.
[59] Tsai, M. C., Weng, M. H., and Hsieh, M. F., 2002, “Computer-Aided Design and Analysis of New Fan Motors,” IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3467-3474.
[60] Lacombe, G., Foggia, A., Marechal, Y., Brunotte, X., and Wendling P., 2007, “From General Finite-Element Simulation Software to Engineering-Focused Software: Example for Brushless Permanent Magnet Motors Design,” IEEE Transactions on Magnetics, Vol. 43, No. 4, pp. 1657-1660.
[61] Hsu, Y. S., Tsai, M. C., and Hsieh, M. F., 2008, “Novel Stator Design of Fan Motors Using Soft Magnetic Composites,” Journal of Applied Physics, Vol. 103, No. 7, Paper No. 07F109.
[62] Wrobel, R. and Mellor, P. H., 2008,“Design Considerations of a Direct Drive Brushless Machine With Concentrated Windings,” IEEE Transactions on Energy Conversion ,Vol. 23, No. 1, pp. 1-8.
[63] Yan, G. J., Hsu, L. Y., Wang, J. H., Tsai, M. C., and Wu, X. Y., 2009, “Axial-Flux Permanent Magnet Brushless Motor for Slim Vortex Pumps,” IEEE Transactions on Magnetics, Vol. 45, No. 10, pp. 4732-4735.
[64] Upadhyay, P. R., Rajagopal, K. R., and Singh, B. P., 2004, “Design of a Compact Winding for an Axial-Flux Permanent-Magnet Brushless DC Motor Used in an Electric Two-Wheel Vehicle,” IEEE Transactions on Magnetics, Vol.40, No.4, pp.2026-2028.
[65] Sim, D. J., Cho, D. H., Chun, J. S., Jung, H. K., and Chung, T. K., 1997, “Efficiency Optimization of Interior Permanent Magnet Synchronous Motor Using Genetic Algorithms,” IEEE Transactions on Magnetics, Vol. 33, No. 2, pp. 1880-1883.
[66] Cho, D. H., Jung, H. K., and Sim, D. J., 1999, “Multiobjective Optimal Design of Interior Permanent Magnet Synchronous Motors Considering Improved Core Loss Formula,” IEEE Transactions on Energy Conversion, Vol. 14, No. 4, pp. 1347-1352.
[67] Hosokawa, Y., Noguchi, S., Yamashita, H., and Tanimoto, S., 2002, “An Optimal Design Method for Efficiency of Permanent Magnet Motors,” Electrical Engineering in Japan, Vol. 138, No. 3, pp. 72-79.
[68] Hwang, C. C., Lyu, L. Y., Liu, C. T., and Li, P. L., 2008, “Optimal Design of an SPM Motor Using Genetic Algorithms and Taguchi Method,” IEEE Transactions on Magnetics, Vol. 44, No. 11, pp. 4325-4328.
[69] Isfahani, A. H., Vaez-Zadeh, S., and Rahman, M. A., 2008, “Using Modular Poles for Shape Optimization of Flux Density Distribution in Permanent-Magnet Machines,” IEEE Transactions on Magnetics, Vol. 44, No. 8, pp. 2009-2015.
[70] Luomi, J., Zwyssig, C., Looser, A., and Kolar, J. W., 2009, “Efficiency Optimization of a 100-W 500000-r/min Permanent-Magnet Machine Including Air-Friction Losses,” IEEE Transactions on Industrial Applications, Vol. 45, No. 4, pp. 1368-1377.
[71] Yang, Y. P., Wang, J. P., Wu, S. W., and Luh, Y. P., 2004, “Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles- Part II: Optimal Current Waveforms and Performance Test,” IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1883-1891.
[72] Jahns, T. M. and Soong, W. L., 1996, “Pulsating Torque Minimization Techniques for Permanent Magnet AC Motor Drives- A Review,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 2, pp. 321-330.
[73] Keyhani, A. and Studer, C. B., 1999, “Study of Cogging Torque in Permanent Magnet Machines,” Electric Machines and Power Systems, Vol. 27, pp. 665-678.
[74] Islam, R., Husain, I., Fardoun, A., and McLaughlin, K., 2009, “Permanent-Magnet Synchronous Motor Magnet Designs With Skewing for Torque Ripple and Cogging Torque Reduction,” IEEE Transactions on Industry Applications, Vol. 45, No. 1, pp. 152-160.
[75] Sakabe, S., Shinoda, Y., and Yokoyama, H., 1990, “Effect of Interpole on Cogging Torque of Two-Phase Permanent Magnet Motor,” Electrical Engineering in Japan, Vol. 110, No. 4, pp. 131-138.
[76] Rizzo, M., Savini, A., and Turowski, J., 1991, “Influence of Number of Poles on the Torque of DC Brushless Motors with Auxiliary Salient Poles,” IEEE Transactions on Magnetics, Vol. 27, No. 6, pp. 5420-5422.
[77] Goto, M. and Kobayashi, K., 1983, “An Analysis of the Cogging Torque of a DC Motor and a New Technique of Reducing the Cogging Torque,” Electrical Engineering in Japan, Vol. 103, No. 5, pp. 711-718.
[78] Zeroug, H., Boukais, B., and Saharoui, H., 2002, “Analysis of Torque Ripple in a BDCM,” IEEE Transactions on Magnetics, Vol. 38, No. 2, pp. 1293-1296.
[79] Li, T. and Slemon, G., 1988, “Reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol. 24, No. 6, pp. 2901-2903.
[80] Eom, J. B, Hwang, S. M., Kim, T. J., Jeong, W. B., and Kang, B. S., 2001, “Minimization of Cogging Torque in Permanent Magnet Motors by Teeth Pairing and Magnet Arc Design Using Genetic Algorithm,” Journal of Magnetism and Magnetic Materials, Vol. 226, No. 2, pp. 1229-1231.
[81] Chung, T. K., Kim, S. K., and Hahn, S. Y, 1997, “Optimal Pole Shape Design for the Reduction of Cogging Torque of Brushless DC Motor Using Evolution Strategy,” IEEE Transactions on Magnetics, Vol. 33, No. 2, pp. 1908-1911.
[82] Yao, Y. D., Huang, D. R., Wang, J. C., Liou, S. H., and Wang, S. J., 1997, “Simulation Study of the reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol. 33, No. 5, pp. 4095-4097.
[83] Yao, Y. D., Huang, D. R., Wang, J. C., and Wang, S. J., 1998, “Study of a High Efficiency and Low Cogging Torque Spindle Motor,” IEEE Transactions on Magnetics, Vol. 34, No. 2, pp. 465-467.
[84] Lin, Y. K., Hu, Y. N., Lin, T. K., Lin, H. N., Chang, Y. H., Chen, C. Y., Wang, S. J., Ying, T. F., 2000, “A Method to Reduce the Cogging Torque of Spindle Motors,” Journal of Magnetism and Magnetic Materials, Vol. 209, No. 2-3, pp. 180-182.
[85] Hsu, L. Y. and Tsai, M. C., 2004, “Tooth Shape Optimization of Brushless Permanent Magnet Motors for Reducing Torque Ripples,” Journal of Magnetism and Magnetic Materials, Vol. 282, pp. 193-197.
[86] Zhu, Z. Q., Chen, J. T., Wu, L. J., and Howe, D., 2008, “Influence of Stator Asymmetry on Cogging Torque of Permanent Magnet Brushless Machines,” IEEE Transactions on Magnetics, Vol. 44, No. 11, pp. 3851-3854.
[87] Ackermann, B., Janssen, J. H. H., Sottek, R., and Steen, R. I., 1992, “New Technique for Reduction Cogging Torque in a Class of Brushless DC Motors,” IEE Proceedings-B, Vol. 339, No. 4, pp. 315-320.
[88] Ishikawa, T., and Slemon, G. R., 1993, “A Method of Reducing Ripple Torque in Permanent Magnet Motors without Skewing,” IEEE Transactions on Magnetics, Vol. 29, No. 2, pp. 2028-2031.
[89] Jiang, X., Xing, J., Li, Y., and Lu, Y., 2009, “Theoretical and Simulation Analysis of Influences of Stator Tooth Width on Cogging Torque of BLDC Motors,” IEEE Transactions on Magnetics, Vol. 45, No. 10, pp. 4601-4604.
[90] Choi. J. H., Kim, J. H., Kim, D. H., and Baek, Y. S., 2009, ”Design and Parametric Analysis of Axial Flux PM Motors With Minimized Cogging Torque,” IEEE Transactions on Magnetics, Vol. 45, No. 6, pp. 2855-2858.
[91] Freudenstein, F., 1971, “An Application of Boolean Algebra to the Motion of Epicyclic Drives,” ASME Journal of Engineering for Industry, Vol. 93B, pp. 176-182.
[92] Buchsbaum, F. and Freudenstein, F., 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms,” Journal of Mechanisms, Vol. 5, pp. 357-392.
[93] Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, No. 3, pp. 329-337
[94] Chatterjee, G. and Tsai, L. W., 1994, “Enumeration of Epicyclic-Type Automatic Transmission Gear Trains,” Journal of Passenger Cars: Mechanical Systems, Vol. 103, pp. 1415-1426.
[95] Tsai, L. W., 1995, “An Application of Graph Theory to the Detection of Fundamential Circuits in Epicyclic Gear Trains,” Technical Report TR 1995-97, Digital Repository at the University of Maryland, Maryland, U.S.A.
[96] Olson, D. G., Erdman, A. G., and Riley, D. R., 1991, “Topological Analysis of Single-Degree of freedom Planetary Gear Trains,” ASME Journal of Mechanical Design, Vol. 113, No. 1, pp. 10-16.
[97] Hsu, C. H. and Lam, K. T., 1992, “A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains,” ASME Journal of Mechanical Design, Vol. 114, No. 1, pp. 196-200.
[98] Hsu, C. H., 1993, “Synthesis of Kinematic Structure of Epicyclic Gear Trains by Admissible Graph Method,” Journal of Franklin Institute, Vol. 330, No. 5, pp. 913-927.
[99] Hsu, C. H. and Hsu, J. J., 1997, “An Efficient Methodology for the Structural Synthesis of Geared kinematic Chains,” Mechanism and Machine Theory, Vol. 32, pp. 957-973.
[100] Hsu, C. H. and Hsu, J. J., 2000, “Epicyclic Gear Trains for Automotive Automatic Transmissions,” Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, Vol. 214, pp. 523-532.
[101] Freudenstein, F. and Yang, A. T., 1972, “Kinematics and Statics of a Coupled Epicyclic Spur-Gear Train,” Mechanism and Machine Theory, Vol. 7, pp. 263-275.
[102] Yan, H. S. and Hsieh, L. C., 1991, “Kinematic Analysis of General Planetary Gear Trains,” Proceedings of the 8th World Congress on the Theory of Machines and Mechanisms, Prague, Czechoslovakia, Vol. 6, pp. 153-157.
[103] Hsieh, L. C. and Yan, H. S., 1992, “Generalized Kinematic Analysis of Planetary Gear Trains,” International Journal of Vehicle Design, Vol. 13, Nos. 5/6, pp. 494-504.
[104] Mogalapalli, S. N., Magrba, E. B., and Tasi, L. W., 1993, “A CAD System for the Optimization of Gear Ratios for Automotives Automatic Transmission,” SAE Paper No. 930,675.
[105] Simionescu, P. A., Beale, D., and Dozier, G. V., 2006, “Teeth-Number Synthesis of a Multispeed Planetary Transmission Using an Estimation of Distribution Algorism,” ASME Journal of Mechanical Design, Vol. 128, pp. 108-115.
[106] Hsu, C. H., 2002, “An Analytic Methodology for the Kinematic Synthesis of Epicyclic Gear Mechanisms,” ASME Journal of Mechanical Design, Vol. 124, pp. 574-576.
[107] 顏鴻森,蔡明祺,王心德,洪銀農,洪銀樹,2001,馬達與齒輪整合之裝置,中華民國專利第434,977號。
[108] 顏鴻森,吳益彰,2006,整合行星齒輪系之直流無刷馬達,中華民國專利第I253800號。
[109] Yan, H. S. and Wu, Y. C., 2006, “A Novel Design of a Brushless DC Motor Integrated with an Embedded Planetary Gear Train,” IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 5, pp. 551-557.
[110] Yan, H. S. and Wu, Y. C., 2006, “A Novel Configuration for a Brushless DC Motor with an Integrated Planetary Gear Train,” Journal of Magnetism and Magnetic Materials, Vol. 301, No. 2, pp. 532-540.
[111] Yan, H. S. and Wu, Y. C., 2007, “Geared Motor with Planetary Gear Assembly,” U. S. Patent No. 7,211,016.
[112] 吳益彰,顏鴻森,2007,“一種新型齒輪馬達之構想設計”,第十屆全國機構與機器設計學術研討會,台中,台灣,論文編號A12。
[113] 吳益彰,顏鴻森,2008,”整合式行星齒輪系與永磁無刷馬達之構想設計”,中國機械工程學會第二十五屆全國學術研討會,彰化,台灣,論文編號csme25-493。
[114] Yan, H. S., Wang, H. T., and Liu, J. Y., 2006, “Structural Synthesis of Novel Integrated DC Gear Motors,” Mechanism and Machine Theory, Vol. 41, No. 11, pp. 1289-1305.
[115] 林均瑜,2007,”整合風力發電機與齒輪箱之構形設計”,國立成功大學機械工程學系碩士論文,台南,台灣。
[116] Wu, Y. C., Chen, G. C., and Yan, H. S., ”Optimization Design of a DC Commutator Motor with an Integrated Planetary Gear Train. ”, IEEE Transactions on Magnetics, 2011. Vol. 47, No. 10: pp. 4461-4464.
[117] 王思為, 2015,”一種新型充電式電鑽之設計”,國立成功大學機械工程學系碩士論文,台南,台灣。
[118] 李若瑜,2016,” 整合行星齒輪式減速機切換式磁阻馬達之設計與分析”,國立成功大學機械工程學系碩士論文,台南,台灣。
[119] 王紹宇,2017,” 整合行星齒輪式減速機與混合型步進馬達之設計與分析”,國立成功大學機械工程學系碩士論文,台南,台灣。
[120] 吳益彰,林伯煒,2008,”整合式驅動馬達與內變速器之概念設計”, Motor Express,第303期,國立成功大學馬達科技研究中心,台南,台灣。
[121] 蔡明祺,林博正,陳添智,王明賢,2005,同心式馬達設計與控制應用,國科會專題計畫結案報告,NSC91-2213-E-006-123。
[122] 蔡明祺,林博正,杜黎蓉,2003,雙同心軸馬達,中華民國發明專利第181543號。
[123] 蔡明祺,林博正,杜黎蓉,2003,無段變速馬達,中華民國發明專利第183349號。
[124] Wang, L. L., Shen, J. X., Wang, Y., and Wang, K., 2008, “A Novel Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor,” 4th IET International Conference on Power Electronics, Machines, and Drives, York, UK, pp. 33-36.
[125] Wang, L. L., Shen, J. X., Luk, P. C. K., Fei, W. Z., Wang, C. F., and Hao, H., 2009, “Development of a Magnetic-Geared Permanent-Magnet Brushless Motor,” IEEE Transactions on Magnetics, Vol. 45, No. 10, pp. 4578-4581.
[126] Chau, K. T., Zhang, D., Jiang, J. Z., Liu, C., Zhang, Y., 2007, “Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles,” IEEE Transactions on Magnetics, Vol. 43, No. 6, pp. 2504-2506.
[127] Jian, L., Chau, K. T., and Jiang, J. Z., 2009, “A Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Machine for Wind Power Generation,” IEEE Transactions on Industrial Applications, Vol. 45, No. 3, pp. 954-962.
[128] Yan, H. S. and Wu, L. I., 2014, Mechanism, 4th Edition, Tunghua Books Co. Ltd., Taipei, Taiwan.
[129] Hsu, C. H., 2006, Creative Mechanism Design, Gau Lih Books Co. Ltd., Taipei, Taiwan.
[130] French, M.J., 1999, Conceptual Design for Engineers, Design council/Springer-Verlag, London, UK.
[131] Slemon, G. R., 1990, “An equivalent circuit approach to analysis of synchronous machines with saliency and saturation,” IEEE Transactions on Energy Conversion, Vol. 5, No. 3, pp. 538-544.
[132] Wu, Y. C. and Jian B. S., 2015, “Magnetic field analysis of a coaxial magnetic gear mechanism by two-dimensional equivalent magnetic circuit network method and finite-element method,” Applied Mathematical Modelling, Vol. 39, No.19, pp. 5746-5758.
[133] China Steel Corporation, 1971, Electromagnetic Characteristics of Electromagnetic Coil (in Chinese), Kaohsiung, Taiwan.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-10-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-10-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw