進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1808202016521600
論文名稱(中文) 凝析石墨以超音波輔助有機溶劑製備石墨烯微片之研究
論文名稱(英文) Preparation of graphene nanoplatelets from kish graphite by ultrasonic assisted exfoliation with organic solvent
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 潘冠廷
研究生(英文) Kuan-Ting Pan
學號 P56071175
學位類別 碩士
語文別 中文
論文頁數 125頁
口試委員 指導教授-張祖恩
口試委員-王鴻博
口試委員-侯文哲
口試委員-陳盈良
中文關鍵字 凝析石墨  高爐副產物  石墨烯  超音波  有機溶劑 
英文關鍵字 blast furnace by-products  kish graphite  graphene  ultrasonic  organic solvent 
學科別分類
中文摘要 高爐集塵灰為鋼鐵產業之副產物,其中含有一定量之凝析石墨,凝析石墨為在煉鋼過程中由高溫鐵水於降溫過程中因為過飽和碳析出所形成。目前相關文獻已能將高爐集塵灰透過富集與純化獲得高純度之凝析石墨,若能將這些高純度之凝析石墨高值化為石墨烯,不僅能拓展此類副產物再利用之用途外,亦能大幅增加其價值,達到資源循環再利用之目標。本研究首先以煉鋼集塵灰回收之高純度凝析石墨及市售之天然石墨,進行超音波液相剝離試驗,過程中以石墨烯懸浮液濃度為指標尋求最佳反應參數操作條件。此外,為了增強其剝離效果故添加檸檬酸鈉及改變水溶液之pH值,探討最適添加條件,最後將剝離後之石墨烯進行特性分析,包含缺陷度、厚度及層數,以瞭解利用凝析石墨所製備出石墨烯之特性。
由基本特性分析結果顯示凝析石墨及天然石墨之石墨含量相近約為99.01%,故凝析石墨具有剝離為石墨烯之潛力。在進行超音波液相剝離反應過程中,過高之振幅會使得超音波探針前端產生過多氣泡進而影響慣性空化作用的發生,對石墨烯濃度有負面影響。調整有機溶劑與水之體積比於一定比例下能大幅提升石墨烯懸浮液之濃度。石墨初始濃度的增加有助於石墨烯濃度的提升,但添加過量會使得石墨無法有效的剝離為石墨烯,同時會使剝離後的石墨烯重新團聚回石墨中,使石墨烯濃度呈現不增反降之現象。而增長超音波反應時間有助於石墨烯濃度的提升。另外,使用探針式超音波所製備出之石墨烯濃度較水浴式超音波佳,而在有機溶劑方面,NMP效果較THF來得好。本研究利用凝析石墨以探針式超音波在振幅50%、NMP與水之體積比為4:1、石墨初始濃度為50 mg/mL、時間為120 min之條件下,石墨烯濃度可達0.9925 mg/mL。
透過添加檸檬酸鈉及調整水溶液之pH值皆有助於石墨更進一步剝離為石墨烯。凝析石墨以探針式超音波於固定反應時間為30 min,當檸檬酸鈉添加濃度為20 mg/mL時,石墨烯濃度達1.0390 mg/mL;而調整添加水溶液之pH值於pH = 12時,石墨烯濃度達1.3169 mg/mL,以調整水溶液pH值之效果較添加檸檬酸鈉顯著。
此外,由拉曼分析結果顯示,凝析石墨製備之石墨烯其缺陷程度小於利用天然石墨所製備之石墨烯。由AFM之分析結果可發現使用凝析石墨在水浴式超音波下所得之石墨烯厚度為13.18 nm,於探針式超音波下為4.96 nm,顯示使用探針式超音波可得到較薄之石墨烯片。而由HR-TEM之分析結果,可看到高度透明之石墨烯片,且亦可從SAED圖觀察到石墨烯單晶繞射圖,另外觀察其邊緣層數,發現使用探針式超音波所剝離之石墨烯約為5~6層。
綜合而言,本研究透過超音波輔助有機溶劑製備石墨烯之方法,可有效將凝析石墨製備出高濃度且層數少厚度薄之石墨烯,除了可循環再利用煉鋼副產物之外,更達到高值化之目的。
英文摘要 Blast furnace dust is a by-product of the steel industry. It contains a certain amount of kish graphite, which is precipitated from molten iron at high-temperature during the cooling process. After froth flotation and acid purification, the kish graphite with high graphite concentration is obtained. In this study, high graphite concentration of kish graphite was used as an initial material to prepare as graphene and natural graphite was used as a control group. When using the liquid phase exfoliation by the ultrasonic, choosing a suitable organic solvent and adjust its ratio with water can effectively exfoliate graphite. The excessive amplitude of ultrasonic and initial graphite concentration has a negative impact on the graphene concentration.When using VNMP:Vwater = 4:1, amplitude = 50%, initial graphite concentration = 50 mg/mL and the reaction time =30 min, the graphene concentration can reach 0.97 mg/mL. Compared with natural graphite under the same parameters, the concentration of graphene exfoliated by kish graphite is lower but it has a good defect performance by Raman spectra. After that, changing the pH of the added water to enhance its exfoliation effect. The result shows that when the added water of pH was 12, the concentration increased to 1.31 mg/mL. The results show that the number of layers of graphene prepared by this method is about 5~6, and the single-crystal diffraction pattern of graphene can be observed and its average thickness is about 4.96 nm.
論文目次 摘要 I
誌謝 X
目錄 XII
表目錄 XV
圖目錄 XVI
第一章 前言 1
1-1 研究動機與目的 1
1-2 研究內容 2
第二章 文獻回顧 4
2-1 石墨之特性、種類與應用現況 4
2-1-1 石墨之特性與種類 4
2-1-2 凝析石墨之來源及形成機制 6
2-1-3 凝析石墨之富集與純化 9
2-1-4 石墨之應用現況及高值化發展 11
2-2 石墨烯之特性及製備方法 12
2-2-1 石墨烯之結構與特性 12
2-2-2 石墨烯之製備技術 14
2-2-3 石墨烯製備方法之比較 17
2-3 超音波液相剝離法製備石墨烯 19
2-3-1 液相剝離石墨烯之技術 19
2-3-2 影響超音波液相剝離石墨烯之因子 25
2-4 小結 31
第三章 研究材料、設備與方法 32
3-1 研究架構與實驗流程 32
3-2 研究材料與設備 34
3-2-1 樣品前處理 34
3-2-2 實驗試藥與儀器設備 34
3-3 研究分析與方法 37
3-3-1 超音波液相剝離操作條件探討 37
3-3-2 超音波液相剝離實驗程序 37
3-3-3 分析方法 38
第四章 結果與討論 46
4-1 天然石墨及凝析石墨之基本特性 46
4-1-1 基本物化特性 46
4-1-2 碳含量與表面形態 52
4-1-3 晶相組成與結構缺陷 55
4-1-4 小結 58
4-2 超音波液相剝離石墨烯參數之探討 59
4-2-1 以水浴式超音波對剝離石墨烯之影響 59
4-2-2 以探針式超音波對剝離石墨烯之影響 68
4-2-3 石墨烯之特性 77
4-2-4 小結 86
4-3 凝析石墨進行超音波液相剝離石墨烯之探討 88
4-3-1 以水浴式超音波對凝析石墨剝離石墨烯之影響 88
4-3-2 以探針式超音波對凝析石墨剝離石墨烯之影響 97
4-3-3 凝析石墨剝離為石墨烯之特性 105
4-3-4 小結 114
第五章 結論與建議 116
5-1 結論 116
5-2 建議 118
參考文獻 119
參考文獻 Arao, Y., &Kubouchi, M., High-rate production of few-layer graphene by high-power probe sonication, Carbon, Vol. 95, pp. 802–808, 2015.
Arao, Y., Mori, F., &Kubouchi, M., Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation, Carbon, Vol. 118, pp. 18–24, 2017.
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., &Heer, W. A.De, Ultrathin Epitaxial Graphite : 2D Electron Gas Properties and a Route toward, The Journal of Physical Chemistry B, Vol. 108, NO. 52, pp. 19912–19916, 2004.
Bourelle, E., Kaburagi, Y., Hishiyama, Y., &Inagaki, M., STM study of surfaces of kish graphite doped by iron, Carbon, Vol. 8, pp. 1955–1962, 2001.
Childres, I., Jauregui, L. A., Park, W., Caoa, H., &Chena, Y. P., Raman spectroscopy of graphene and related materials, New Developments in Photon and Materials Research, pp. 403–418, 2013.
Du, W., Lu, J., Sun, P., Zhu, Y., &Jiang, X., Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene, Chemical Physics Letters, Vol. 568–569, pp. 198–201, 2013.
Geim, A. K., &Novoselov, K. S., The rise of graphene, Nat Mater, Vol. 6, pp. 183–191, 2007.
Griggs, S., C., &Medina, V. F., Graphene and graphene oxide membranes for water treatment, McGraw Hill Encyclopedia of Science & Technology, pp. 1–10, 2016.
Guardia, L., Fernández-Merino, M., J., Paredes, J. I., Solis-Fernandez, P., Villar-Rodil, S., Martinez-Alonso, A., &Tascón, J. M. D., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants, Carbon, Vol. 49, NO. 5, pp. 1653–1662, 2011.
Han, J. T., Jang, J. I., Kim, H., Hwang, J. Y., Yoo, H. K., Woo, J. S., Choi, S., Kim, H. Y., Jeong, H. J., Jeong, S. Y., Baeg, K. J., Cho, K., &Lee, G. W., Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation, Scientific Reports, Vol. 4, pp. 1–7, 2014.
Hansen, C. M., Hansen solubility parameters: a user’s handbook, CRC Press, 2007.
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., Mcgovern, I. T., Holland, B., Byrne, M., Ko, Y. K. G. U. N., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., &Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology, Vol. 3, NO. 9, pp. 563, 2008.
Hummers Jr, W. S., &Offeman, R. E., Preparation of Graphitic Oxide, Journal of the American Chemical Society, Vol. 80, NO. 9, pp. 1339–1339, 1958.
Jeon, I. Y., Shin, Y. R., Sohn, G. J., Choi, H. J., Bae, S. Y., Mahmood, J., Jung, S. M., Seo, J. M., Kim, M. J., Chang, D. W., Dai, L., &Baek, J. B., Edge-carboxylated graphene nanosheets via ball milling, Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, NO. 15, pp. 5588–5593, 2012.
Khan, U., O’Neill, A., Lotya, M., De, S., &Coleman, J. N., High-concentration solvent exfoliation of graphene, Small, Vol. 6, NO. 7, pp. 864–871, 2010.
Khan, U., Porwal, H., Óneill, A., Nawaz, K., May, P., &Coleman, J. N., Solvent-exfoliated graphene at extremely high concentration, Langmuir, Vol. 27, NO. 15, pp. 9077–9082, 2011.
Li, J., Yan, H., Dang, D., Wei, W., &Meng, L., Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene, Journal of Colloid and Interface Science, Vol. 535, pp. 92–99, 2019.
Lin, Z., Karthik, P. S., Hada, M., Nishikawa, T., &Hayashi, Y., Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication, Nanomaterials, Vol. 7, NO. 6, 2017.
Liu, S., & Loper, C. R., Kish, a source of crystalline graphite, Carbon, Vol. 29, NO. 8, pp. 1119–1124, 1991.
Lotya, M., King, P. J., Khan, U., De, S., &Coleman, J. N., High-Concentration, Surfactant-Stabilized Graphene Dispersions, Vol. 4, NO. 6, pp. 3155–3162, 2010.
Lu, J., Yang, J., Wang, J., Lim, A., Wang, S., &Loh, K. P., One-Pot Synthesis of Fluorescent Carbon Graphene by the Exfoliation of Graphite in Ionic Liquids, Vol. 3, NO. 8, pp. 2367–2375, 2009.
Manna, K., Huang, H. N., Li, W. T., Ho, Y. H., &Chiang, W. H., Toward Understanding the Efficient Exfoliation of Layered Materials by Water-Assisted Cosolvent Liquid-Phase Exfoliation, Chemistry of Materials, Vol. 28, NO. 21, pp. 7586–7593, 2016.
Muthoosamy, K., &Manickam, S., Ultrasonics - Sonochemistry State of the art and recent advances in the ultrasound-assisted synthesis , exfoliation and functionalization of graphene derivatives, Ultrasonics - Sonochemistry, Vol. 39, NO. February, pp. 478–493, 2017.
Novoselov, K. S., Geim, A. K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., &A. A. Firso, Electric Field Effect in Atomically Thin Carbon Films, Science, Vol. 306, NO. October, pp. 666–670, 2004.
Okamoto, H., The C-Fe (carbon-iron) system, Journal of Phase Equilibria, Vol. 13, NO. 5, pp. 543–565, 1992.
Öney, Ö., &Samanli, S., Determination of optimal flotation conditions of low-grade graphite ore, E3S Web of Conferences, Vol. 8, 2016.
Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., …Coleman, J. N., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature Materials, Vol. 13, NO. 6, pp. 624–630, 2014.
Pu, N. W., Wang, C. A., Sung, Y., Liu, Y. M., &Ger, M.Der, Production of few-layer graphene by supercritical CO2 exfoliation of graphite, Materials Letters, Vol. 63, NO. 23, pp. 1987–1989, 2009.
Qiao, W., Yan, S., He, X., Song, X., Li, Z., Zhang, X., Zhong, W., &Du, Y., Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS2 nanosheets, RSC Advances, Vol. 4, NO. 92, pp. 50981–50987, 2014.
Raccichini, R., Varzi, A., Passerini, S., &Scrosati, B., The role of graphene for electrochemical energy storage, Nature Materials, Vol. 14, NO. 3, pp. 271–279, 2015.
Rangappa, D., Sone, K., Wang, M., Gautam, U. K., Golberg, D., Itoh, H., Ichihara, M., &Honma, I., Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation, Chemistry - A European Journal, Vol. 16, NO. 22, pp. 6488–6494, 2010.
Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonson, M., Adamson, D. H., Prud’homme, R. K., Car, R., Seville, D. A., &Aksay, I. A., Functionalized single graphene sheets derived from splitting graphite oxide, Journal of Physical Chemistry B, Vol. 110, NO. 17, pp. 8535–8539, 2006.
Shen, J., Wu, J., Wang, M., Dong, P., Xu, J., Li, X., Zhang, X., Yuan, J., Wang, X., Ye, M., Vajtai, R., &Lou, J., Surface Tension Components Based Selection of Cosolvents for Effi cient Liquid Phase Exfoliation of 2D Materials, pp. 2741–2749, 2016.
Singh, R., Kumar, D., &Tripathi, C. C., Graphene: Potential material for nanoelectronics applications, Indian Journal of Pure and Applied Physics, Vol. 53, NO. 8, pp. 501–513, 2015.
Su, C., Lu, A., Xu, Y., Chen, F., Khlobystov, A. N., &Li, L., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano, Vol. 5, NO. 3, pp. 2332–2339, 2011.
Sun, Z., Masa, J., Liu, Z., Schuhmann, W., &Muhler, M., Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction, Chemistry - A European Journal, Vol. 18, NO. 22, pp. 6972–6978, 2012.
Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., &Pei, S. S., Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, Vol. 93, NO. 11, pp. 1–4, 2008.
Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L., &Chen, G., Preparation of graphene by exfoliation of graphite using wet ball milling, Journal of Materials Chemistry, Vol. 20, NO. 28, pp. 5817–5819, 2010.
Zhao, W., Wu, F., Wu, H., &Chen, G., Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling, Journal of Nanomaterials, Vol. 2010, 2010.
江尉萍,高爐凝析石墨富集與純化之研究,國立成功大學,環境工程學系,碩士論文,2019。

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw