進階搜尋


下載電子全文  
系統識別號 U0026-1808201817512800
論文名稱(中文) 以行為推理理論探討公共自行車之使用意圖-以YouBike為例
論文名稱(英文) Exploring the Public Bicycle Adopting Intention with Behavioral Reasoning Theory-Taking YouBike as an Example
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 106
學期 2
出版年 107
研究生(中文) 劉廷毅
研究生(英文) Ting-I Liu
學號 R56051101
學位類別 碩士
語文別 英文
論文頁數 75頁
口試委員 指導教授-林佐鼎
口試委員-蔡東峻
口試委員-楊宗璟
口試委員-賴文泰
中文關鍵字 自行車共享  綠色運輸  行為推理理論  結構方程模式 
英文關鍵字 Bicycle-sharing  Green transportation  Behavioral reasoning theory  Structural equation model 
學科別分類
中文摘要 因應人為二氧化碳的排放造成全球暖化與人類活動造成的交通擁擠,促進並推廣更多民眾使用公共自行車,進而達到轉移私人運具的目的。本研究的主要是基於環境保護觀點下,應用行為推理理論探討哪些關鍵因素會影響公共自行車的使用意圖,並探討如何應用這些關鍵因素鼓勵民眾多加使用公共自行車。本研究利用五項潛在因素分析公共自行車使用的關鍵因素和障礙:包括環境價值觀、反對使用公共自行車之因素、支持使用公共自行車之因素、使用公共自行車之整體動機與公共自行車使用意圖。
本研究以台北市公共自行車YouBike為例,針對居住在台北市的居民進行調查,一共回收432份有效樣本。研究方法主要有兩個部分,首先,本研究應用驗證性因素分析經由外顯變數衡量潛在因素,並確保發展模型之可靠性和有效性是適當的。接著,本研究應用基於共變異數之結構方程模型來評估與公共自行車使用意圖相關之結構,試圖解釋多個潛在因素之間的影響關係。研究結果顯示,支持使用公共自行車之因素不影響公共自行車之使用意圖;另外,環境價值觀、整體動機與反對使用公共自行車之因素皆與公共自行車之使用意圖有關聯。本研究透過行為推理理論並探討在環境保護的觀點下,建議未來政策應從教育方面提升民眾對於環境價值觀的重視、加強騎乘自行車的整體動機、改善公共自行車系統的使用方便性,來提高民眾對於公共自行車系統的使用意圖。
英文摘要 Global warming caused by anthropogenic carbon emissions and traffic congestion caused by human activities make us hope to promote more people to use public bicycles and achieve the purpose of the transfer of private vehicles. The aims of this study are to understand what factors influence the adopting intention of public bicycle with the behavioral reasoning theory (BRT) and to realize how to encourage people to use public bicycle according to the key factors. This article explores the determinants and barriers of public bicycle adoption through five constructs: environmental values, factors for public bicycle adoption, factors against public bicycle adoption, global motives toward public bicycle adoption, and adopting intention of public bicycle.
This paper takes YouBike as an example, and survey the representative sample of Taipei City residents. There are 432 useful samples in total. The research methodology mainly has two sections. First, we apply the confirmatory factor analysis (CFA) to measure all latent variables via the manifest variables, and make sure the reliability and validity of the developed model are appropriate. Next, we apply the covariance-based structural equation model (CB-SEM) to evaluate the structure of constructs associated with the adoption of public bicycle. The results show the factors for public bicycle adoption do not affect the adopting intention of public bicycle. Besides, environmental values, global motives, and factors against are related to adopting intentions. In implications for policies, we suggest to guide people to have environmental values via education, improve global motives through enhancing attitudes, subjective norms and perceived behavioral controls, and raise the ease of use of public bicycle systems to increase adopting intentions of public bicycle.
論文目次 CHAPTER 1 INTRODUCTION 1
1.1. Research Background 1
1.2. Research Motivation 3
1.3. Research Objective 6
1.4. Research Scope 6
1.5. Research Procedure 6
CHAPTER 2 LITERATURE REVIEW 9
2.1. Public Bicycle System 9
2.1.1. System Evolution 9
2.1.2. Background of Taipei YouBike 11
2.2. Public Bicycle Adopting Intention 17
2.3. Development of Relevant Behavioral Theory 19
2.3.1. Theory of Reasoned Action 19
2.3.2. Theory of Planned Behavior 20
2.3.3. Technology Acceptance Model 20
2.4. Behavioral Reasoning Theory 21
2.4.1. Beliefs and Values 22
2.4.2. Reasons 22
2.4.3. Global Motives 23
2.4.4. Intentions 23
2.4.5. Behavior 23
2.5. Comments on the Literature Review 24
CHAPTER 3 METHODOLOGY 26
3.1. Problem Statement 26
3.2. Hypotheses 27
3.3. Questionnaire Design 29
3.3.1. Environmental Values 29
3.3.2. Factors for public bicycle adoption 31
3.3.3. Factors against public bicycle adoption 32
3.3.4. Global Motives toward Public Bicycle Adoption 33
3.3.5. Adopting Intention of Public Bicycle 34
3.4. Data Collection Plan 36
3.5. Analytical Method 38
CHAPTER 4 EMPIRICAL STUDY 44
4.1. Descriptive Statistics 44
4.2. Measurement Model 47
4.3. Structural Model and Hypothesis Test 53
CHAPTER 5 CONCLUSION & RECOMMENDATION 58
5.1. Findings and Contributions 58
5.2. Implications for Policies 60
5.3. Future Research and Limitations 63
REFERENCES 64
Appendix A Questionnaire (Chinese version) 70
Appendix B Questionnaire (English version) 73
參考文獻 1. 林益仁(2001)。多元文化社會之環境價值觀。環境教育國際學術研討會。臺北市。
2. 邱皓政(2011)。結構方程模式:LISREL的理論、技術與應用。臺北市:雙葉書
廊。
3. 黃運貴(2010)。因應後京都時期運輸部門發展策略規劃之硏究。臺北市:交通部運輸硏究所。
4. 彭森明(2000)。如何促進學校、家庭及社會的教育夥伴關係。文教新潮。
5. 楊冠政(1997)。環境教育。臺北市:明文書局。
6. 經濟部能源局(2017)。我國燃料燃燒二氧化碳排放統計與分析。
7. Acharya, A. S., Prakash, A., Saxena, P., & Nigam, A. (2013). Sampling: Why and how of it. Indian Journal of Medical Specialties, 4(2), 330-333.
8. Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In J. Kuhl & J. Beckmann (Eds.), Action Control: From Cognition to Behavior (pp. 11-39). Berlin, Heidelberg: Springer Berlin Heidelberg.
9. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211
10. Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations.
11. Bai, Y., & Liu, Y. (2013). An exploration of residents’ low-carbon awareness and behavior in Tianjin, China. Energy Policy, 61, 1261-1270. doi:10.1016/j.enpol.2013.06.014
12. BBC News. (2016). East Asia cold snap 'kills 85 in Taiwan'. Retrieved from http://www.bbc.com/news/world-asia-35397763
13. Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika, 45(3), 289-308.
14. Buis, A., Ramsayer, K., & Rasmussen, C. (2015). A Breathing Planet, Off Balance. Retrieved from https://www.jpl.nasa.gov/news/news.php?feature=4769
15. Büttner, J., Mlasowsky, H., Birkholz, T., Gröper, D., Fernández, A. C., Emberger, G., . . . Banfi, M. (2011). Optimising Bike Sharing in European Cities - A Handbook.
16. Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming: Sage.
17. Byrne, B. M. (2001). Structural Equation Modeling With AMOS, EQS, and LISREL: Comparative Approaches to Testing for the Factorial Validity of a Measuring Instrument. International Journal of Testing, 1(1), 55-86. doi:10.1207/s15327574ijt0101_4
18. Chen, S.-Y. (2016). Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system. Transportation Research Part A: Policy and Practice, 88, 58-72. doi:10.1016/j.tra.2016.03.008
19. Chen, S.-Y., & Lu, C.-C. (2016). A model of green acceptance and intentions to use bike-sharing: YouBike users in Taiwan. Networks and Spatial Economics, 16(4), 1103-1124.
20. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
21. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
22. DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of public transportation, 12(4), 3.
23. Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu).
24. Environmental Protection Administration. (2010). The Green Mark. Retrieved from https://greenliving.epa.gov.tw/Public/Eng/GreenMark/First
25. Fernández-Heredia, Á., Jara-Díaz, S., & Monzón, A. (2016). Modelling bicycle use intention: the role of perceptions. Transportation, 43(1), 1-23.
26. Fishbein, M., & Ajzen, I. (1977). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Philosophy and Rhetoric, 10(2), 130-132.
27. Fishman, E., Washington, S., & Haworth, N. (2012). Barriers and facilitators to public bicycle scheme use: A qualitative approach. Transportation Research Part F: Traffic Psychology and Behaviour, 15(6), 686-698. doi:10.1016/j.trf.2012.08.002
28. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
29. Gutman, D. (2016). Will helmet law kill Seattle's new bike-share program Retrieved from https://www.seattletimes.com/seattle-news/transportation/will-helmet-law-kill-seattles-new-bike-share-program
30. Hair, J.F., Black,W.C., Babin, B.J., Anderson, R.E., Tatham, R.L. (2010). Multivariate Data Analysis. Prentice Hall, Upper Saddle River, NJ.
31. Hazen, B., Overstreet, R., & Wang, Y. (2015). Predicting Public Bicycle Adoption Using the Technology Acceptance Model. Sustainability, 7(11), 14558-14573. doi:10.3390/su71114558
32. Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Articles, 2.
33. Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
34. International Energy Agency. (2017). CO2 Emissions from Fuel Combustion 2017. Retrieved from http://www.iea.org/statistics/topics/CO2emissions
35. Jelmer, H. S., Greiner; Aaron, Lee. (2013). MRV of cycling: Measuring the carbon impact of bicycle policy and infrastructure: Climate Focus.
36. Kaplan, S., Manca, F., Nielsen, T. A. S., & Prato, C. G. (2015). Intentions to use bike-sharing for holiday cycling: An application of the Theory of Planned Behavior. Tourism Management, 47, 34-46.
37. Krajhanzl, J. (2010). Environmental and proenvironmental behavior. School and Health, 21, 251-274.
38. Lai, W.-T. (2015). Exploring Use Intention of a Smart Bike-Sharing System-Extending Technology Acceptance Model with Trust LISS 2014 (pp. 1597-1603): Springer.
39. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological methods, 1(2), 130.
40. MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210.
41. Matsueda, R. L., & Press, G. (2012). Key advances in the history of structural equation modeling. Handbook of structural equation modeling, 17-42.
42. Muñoz, B., Monzon, A., & López, E. (2016). Transition to a cyclable city: Latent variables affecting bicycle commuting. Transportation Research Part A: Policy and Practice, 84, 4-17. doi:10.1016/j.tra.2015.10.006
43. National Agricultural Library. (2017). The Glossary of Agricultural Terms. Retrieved from https://agclass.nal.usda.gov/
44. Nunnally, J.C., 2010. Psychometric Theory. Tata McGraw-Hill Education.
45. Perneger, T. V., Courvoisier, D. S., Hudelson, P. M., & Gayet-Ageron, A. (2015). Sample size for pre-tests of questionnaires. Quality of Life Research, 24(1), 147-151.
46. Petty, G. W. (2006). A first course in atmospheric radiation. Madison, Wis.: Sundog Pub.
47. Ryan, T. A. (1970). Intentional behavior: An approach to human motivation.
48. Shaheen, S., & Guzman, S. (2011). Worldwide bikesharing. Access Magazine, 1(39).
49. Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transportation Research Record: Journal of the Transportation Research Board(2143), 159-167.
50. Shaheen, S., Zhang, H., Martin, E., & Guzman, S. (2011). China's Hangzhou Public Bicycle. Transportation Research Record: Journal of the Transportation Research Board, 2247, 33-41. doi:10.3141/2247-05
51. Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change: Cambridge University Press.
52. Taipei City Department of Transportation Statistics. (2018). Bicycle Facilities and Rental Situation in Taipei City. Retrieved from http://dotstat.taipei.gov.tw/pxweb2007P/Dialog/statfile9.asp
53. United Nations Statistical Commission. (1997). Glossary of Environment Statistics. Retrieved from New York: https://unstats.un.org/unsd/environmentgl
54. Westaby, J. D. (2005). Behavioral reasoning theory: Identifying new linkages underlying intentions and behavior. Organizational Behavior and Human Decision Processes, 98(2), 97-120. doi:10.1016/j.obhdp.2005.07.003
55. WMO Greenhouse Gas Bulletin (GHG Bulletin) - No. 13: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016. (2017). WMO Greenhouse Gas Bulletin, 13, 8.
56. Yang, T.-H., Lin, J.-R., & Chang, Y.-C. (2010). Strategic design of public bicycle sharing systems incorporating with bicycle stocks considerations. Paper presented at the Computers and Industrial Engineering (CIE), 2010 40th International Conference on.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw