進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1808201721254700
論文名稱(中文) Birdy姿態與軌道控制技術之建模
論文名稱(英文) Modelling Birdy-T’s Attitude and Orbit Control
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 105
學期 2
出版年 106
研究生(中文) 張明霖
研究生(英文) Maxime Chambon
學號 P46057218
學位類別 碩士
語文別 英文
論文頁數 98頁
口試委員 指導教授-苗君易
共同指導教授-莊智清
口試委員-詹劭勳
口試委員-李約亨
中文關鍵字 none 
英文關鍵字 CubeSat  Birdy-T  Autonomous  Navigation  Attitude  Orbit  Control 
學科別分類
中文摘要 none
英文摘要 Over the past few years, a new satellite’s standard is getting more and more popular in the space industry. This one, denominated as CubeSat is particularly appreciated in universities and educational institutions. Indeed, the affordable price of these nanosatellites compared with bigger spacecraft contribute to facilitate access to space and allow students to work on their own satellite.
Being part of this movement, the Birdy-T project’s objective is to open the CubeSat industry to interplanetary missions. In order to do that, the focus is placed on developing an autonomous navigation system. This one would enable the spacecraft to control its orbit as well as its attitude, thus minimize the communication between the satellite and the ground, and as a result considerably reduce the operation costs.
The aim of this thesis is to simulate the Birdy-T’s technology in a programming language called python. We want to code Birdy-T’s attitude and orbit control as well as identify the information exchanged by the different objects involved in these processes. The first results obtained with this simulation will be presented in this document.
論文目次 ABSTRACT…………………………………………………………………………..II
ACKNOWLEDGMENTS……………………………………………………………III
CONTENTS………………………………………………………………………….IV
LIST OF TABLES…………………………………………………………………..VII
LIST OF FIGURES………………………………………………………………...VIII
NOMENCLATURE……………………………………………………………….....IX
CHAPTER I INTRODUCTION.……………………………………………………1
1.1 Objectives……………………………………………………………………..1
1.2 Review of Previous Works……………………………………………………2
1.3 Thesis Overview………………………………………………………………3
1.4 Autonomous Navigation……………………………………………………...4
1.5 Birdy-T………………………………………………………………………..5
1.6 Attitude, Orbit Determination and Control…………………………………...6
CHAPTER II ATTITUDE AND ORBIT CONTROL FUNDAMENTALS……….7
2.1 Reference Frames……………………………………………………………..7
2.1.1 Body Frame……...……………………………………………………..7
2.1.2 Inertial Frame…………………………………………………………..8
2.2 Quaternion Representation..…………………………………………………..9
2.3 Coordinate Transformation………………………………………………….11
2.4 Satellite Physics.……………………………………………………………..13
2.4.1 Satellite Kinematics.…………………………………………………..13

2.4.2 Satellite Dynamics…………………………………………………….14
2.5 Linear Velocity Problem………..…………………………………………...16
2.6 Control Laws………………………………………………………………...17
2.6.1 Rate Controller.……………………………………………………….17
2.6.2 Attitude Controller……………………………………………………18
2.6.3 Orbit Controller……………………………………………………….20
CHAPTER III SIMULATION ARCHITECTURE.……………………………….22
3.1 Python Fundamentals.……………………………………………………….22
3.2 ADCS Architecture………………………………………………………….23
3.2.1 Sensors Operation…………………………………………………….23
3.2.2 OBC Operation………………………………………………………..27
3.2.3 Actuators Operation…………………………………………………..33
3.2.4 ADCS Operation……………………………………………………...40
3.3 ODCS Architecture………………………………………………………….43
3.3.1 Sensors Operation.……………………………………………………44
3.3.2 IFOD Operation....…………………………………………………….47
3.3.3 OBC Operation.…………………………………………………….....49
3.3.4 Actuators Operation…………………………………………………..51
3.3.5 ODCS Operation.……………………….….…………………………51
3.4 Overall Simulation Architecture…………………………………………….53
CHAPTER IV SIMULATION RESULTS………………………………………...55
4.1 ADCS Process……………………………………………………………….55
4.1.1 Detumbling Scenario………………………………………………….55

4.1.2 Spinning Scenario…………………………………………………….58
4.1.3 Pointing Scenario.…………………………………………………….60
4.2 ODCS Process……………………………………………………………….63
CHAPTER V CONCLUSIONS.…………………………………………………...67
5.1 Summary……....…………………………………………………………….67
5.2 Future Work……………………………………………………...………….68
REFERENCES……………………………………………………………………….69
APPENDIX.………………………………………………………………………….71
參考文獻 [1] A. Tewary, "Atmospheric and Space Flight Dynamics", Indian Institute of Technology, Kampur, 2007.
[2] B. Segret, "IFOD Prototyping and Sensitivity", Birdy-T technical note, 2017.
[3] B. Segret, O. Sleimi, "Problematic for an In-Flight Orbit Determination Software", Birdy-T technical note, 2016.
[4] B. Segret, "PROMESS Campaign for BIRDY", Birdy-T campaign report, 2017.
[5] B. Wie, H. Weiss, A. Arapostathis, "Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations", Journal of Guidance, vol 12, No. 3, 1989.
[6] Euclidean Space. Access Year: 2017, Available: http://www.euclideanspace.
com/maths/algebra/realNormedAlgebra/quaternions/
[7] ESA, Onboard Computer. Access Year: 2017, Available: http://www.esa.int/
Our_Activities/Space_Engineering_Technology/Onboard_Computer_and_Data_Handling/Onboard_Computers
[8] G. Quinsac, "AOCS Functional Integration", Birdy-T technical note, 2017.
[9] K. Wu, I. Ouattara, "Technical Note on AOCS: Attitude and Orbit Control Program", Birdy-T technical note, 2017.
[10] M.S. Ahmed, D.V. Cuk, "Strapdown Attitude Algorithms using Quaternion Transition Matrix and Random Inputs", Scientific-Technical Review, 2005.
[11] N. Trawny, S.I. Roumeliotis, "Indirect Kalman Filter for 3D Attitude Estimation", Technical Report number 2005-002, University of Minnesota, 2005.
[12] S.R.Starin, "Attitude Determination and Control Systems", John Eterno, Southwest Research Institute, 2010.
70
[13] TUDelft, Attitude Determination and Control System. Access Year: 2017, Available: https://www.tudelft.nl/en/ae/organisation/departments/space-engineering/space-systems-engineering/research/miniaturization/attitude-determination-and-control-system-adcs/
[14] Wikipedia, Attitude Control. Access Year: 2017, Available: https://en.wikipedia.org/wiki/Attitude_control.
[15] Wikipedia, Conversion between Quaternions and Eler Angles. Access Year: 2017, Available:https://en.wikipedia.org/wiki/Conversion_between_
quaternions_and_Euler_angles
[16] Wikipedia, CubeSat. Access Year: 2017, Available: https://en.wikipedia.org/wiki/CubeSat
[17] Wikipedia, International Celestial Reference Frame. Access Year: 2017, Available: https://en.wikipedia.org/wiki/International_Celestial_Reference_
Frame
[18] Wikipedia, Python (Programming Language). Access Year: 2017, Available: https://en.wikipedia.org/wiki/Python_(programming_language)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw