進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1808201615275100
論文名稱(中文) 音射與電阻抗法檢測鋼筋混凝土高溫後之殘餘握裹
論文名稱(英文) Acoustic and Resistive Detection of Concrete-Steel Residual Bonds After Elevated Temperature
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 賀天行
研究生(英文) Tian-Xing Ho
學號 N66031320
學位類別 碩士
語文別 中文
論文頁數 180頁
口試委員 指導教授-侯琮欽
口試委員-蘇育民
口試委員-黃忠信
口試委員-郭明錦
口試委員-陳永崇
中文關鍵字 高溫作用  握裹強度  自癒合混凝土  音射法  電阻抗 
英文關鍵字 elevated temperature  bond strength  self-healing concrete  acoustic emission  electrical resistivity 
學科別分類
中文摘要 混凝土的電阻率(resistivity)可反應材料內部的物理與化學狀態,該參數除了受到材料組成影響之外,孔隙分布、含水率及應力應變狀態等因素亦會對電阻率造成顯著的影響,其力電(electromechanical)關係具規律性、可量測且有跡可循。音射法(acoustic emission, AE)係利用極靈敏感測器偵測物體受載過程所釋放的彈性波,將物體表面振動轉換為電子訊號(又稱AE事件),藉由分析AE事件之歷時或頻譜,從中擷取可反應混凝土材料物理狀態的音射參數,以辨別或評估混凝土試體破壞特徵及損傷程度。本研究之目的為探討以電阻抗及音射法檢測混凝土材料在高溫後之力學行為,包括抗壓強度、鋼筋握裹力與自癒合能力等。試驗設計為對混凝土試體施以不同程度的熱負載(thermal loads),包含目標溫度與延燒時間等變數,配比則比較未添加與添加一定比例之防水緩凝劑的混凝土。試體於水中養護28天後(一次養護)施加熱負載,隨後再重新將試體放入養護池中七天(二次養護),再由抗壓試驗及拉拔試驗觀察試體受到熱負載所造成之損傷及其癒合狀況。力學試驗中並輔以音射法檢測不同熱負載作用後的試體於加載過程中所釋放出的音射訊號,以及利用電阻抗法觀察混凝土試體的電阻率變化,以探討混凝土經高溫後其力學、阻抗與音射參數間之關係。
研究結果顯示,隨著目標溫度提升,試體之裂縫平均寬度越大,試體的損傷程度逐漸累積,導致抗壓強度下降,此與預期相符。二次養護讓試體之抗壓強度明顯恢復,甚至可超越未受高溫作用(室溫狀態)且相同齡期之試體。以面乾內飽和(saturated surface dry, SSD)為阻抗量測基準,當熱負載對試體造成的損傷達到一定程度,外界液態水分能夠有效入滲,使得一次養護後的電阻率下降,與預期結果吻合,然透過自癒合機制,二次養護卻使試體之電阻率明顯上升。力學試驗亦顯示,當目標溫度到達125℃時,拉拔試體之鋼筋握裹強度不減反增,因為熱負載尚未造成明顯損傷,且試體之水分飽和度降低,有助於抗壓強度增強,導致鋼筋握裹強度提升。當加熱至600℃,握裹強度才出現較明顯之損失,整體上握裹強度隨著熱負載作用而變動的幅度並不如抗壓強度明顯,且二次養護亦無法觀察出握裹強度再提升的現象。隨著目標溫度逐漸提升、延燒時間逐漸拉長,透過「撞擊訊號」與最大剪力訊號的「頻域峰值」消長情形可以觀察出混凝土試體損傷程度的變化,另外,透過「開裂模式分布圖」,亦能夠看出混凝土對鋼筋的握裹能力逐漸下滑。而經過二次養護後的試體,音射訊號皆有恢復至室溫狀態(未受高溫影響)之趨勢,顯示音射檢測之結果不僅能夠表現試體的損傷程度與破壞模式,亦能檢測試體癒合與否。
英文摘要 Fire hazard is a usual disaster which brings about great damages to reinforced concrete infrastructure. The aim of this study is applying several thermal loads to investigate the residual bonds between concrete and rebar. Moreover, the recovery capability of strength and bond behavior of ordinary and watertight concrete after elevated temperatures were also examined by compressive test and pull-out test. Except traditional mechanical testing methods were used, there were other two non-destructive testing methods, acoustic emission and electrical resistivity measurement, were utilized to evaluate the change of microstructure and bond behavior of reinforced concrete.
According to the test results, the damages to the concrete specimens are proportional to the temperatures. The specimens hold the microstructure-repairing capability when the elevated temperatures were within 600℃. Because the loads of pull-out test make the stress field more complicated, there’s no indication that the bond strength could regain as compressive strength through the second time curing in water storage tank. Though concrete’s capability of strength recovery can be advanced by adding waterproofing admixtures around room temperature, the self-healing mechanism of watertight concrete would be destroyed after thermal loads.
論文目次 摘要 i
Abstract ii
致謝 x
目錄 xi
表目錄 xiv
圖目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究目的 1
1.3 研究流程 2
第二章 文獻回顧 3
2.1 熱負載對混凝土之影響 3
2.1.1 微觀影響 3
2.1.2 外觀影響 4
2.1.3 強度影響 5
2.1.4 鋼筋拉拔影響 6
2.2 電阻抗檢測及其應用於水泥基材料 10
2.2.1 電阻抗與電阻率 10
2.2.2 添加成分對力電學之影響 13
2.2.3 自我損傷感測 19
2.3 音射法檢測及其應用於水泥基材料 23
2.3.1 音射法原理與系統 23
2.3.2 參數法與訊號法 24
2.3.3 參數介紹與應用 25
2.3.4 損傷程度對頻域反應之影響 29
2.3.5 裂縫定位技術 33
2.3.6 振幅—同調分析法 34
2.3.7 彎矩張量法 35
2.4 自癒合混凝土 38
2.4.1 自癒合混凝土之發展目的 39
2.4.2 自體自癒合現象 39
2.4.3 人造自癒合混凝土之起源 44
2.4.4 原生(Intrinsic)自癒合 46
2.4.5 膠囊(Capsule)自癒合 47
2.4.6 導管(Vascular)自癒合 53
2.4.7 健全準則 53
2.4.8 生命週期評估 55
2.5 以防水緩凝劑強化自癒合效果 60
2.5.1 防水緩凝劑基本性質 60
2.5.2 癒合機制與微結構觀察 61
2.5.3 纖維砂漿之工程性質與裂縫癒合能力 64
2.5.4 電阻率檢測 67
2.5.5 音射法檢測 69
第三章 試驗內容與規劃 72
3.1 熱負載 72
3.2 裂縫觀察 75
3.3 抗壓試驗 76
3.4 電阻率測量 76
3.5 拉拔試驗與音射法檢測 82
3.6 音射軟體設定 88
3.7 試驗材料 93
3.8 試體製作過程 95
3.9 試驗組別 98
第四章 試驗結果 100
4.1 熱負載之溫度曲線 100
4.2 裂縫觀察 106
4.3 抗壓試驗 108
4.4 電阻率測量 116
4.5 拉拔試驗 125
4.6 音射法檢測 133
4.6.1 撞擊訊號分析 133
4.6.2 開裂模式分析 141
4.6.3 頻域反應分析 150
第五章 結論與建議 153
5.1 結論 153
5.2 建議 156
參考文獻 157
附錄A 撞擊訊號歷時 160
附錄B 開裂模式分布圖 167
附錄C 最大RA值波形與頻譜 174
參考文獻 [1] B. Georgali and P. E. Tsakiridis, "Microstructure of fire-damaged concrete. A case study," Cement & Concrete Composites, vol. 27, pp. 255-259, Feb 2005.
[2] O. Arioz, "Effects of elevated temperatures on properties of concrete," Fire Safety Journal, vol. 42, pp. 516-522, Nov 2007.
[3] M. Husem, "The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete," Fire Safety Journal, vol. 41, pp. 155-163, 2006.
[4] 詹凱任, "以力電學非破壞性檢測法評估RC構建火害後之鋼筋握裹力," 國立高雄應用科技大學土木工程與防災科技研究所碩士論文, 2013.
[5] B. Chen, K. Wu, and W. Yao, "Conductivity of carbon fiber reinforced cement-based composites," Cement and Concrete Composites, vol. 26, pp. 291-297, 2004.
[6] D. Chung, "Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials," Carbon, vol. 39, pp. 1119-1125, 2001.
[7] S. Wen and D. Chung, "Partial replacement of carbon fiber by carbon black in multifunctional cement–matrix composites," Carbon, vol. 45, pp. 505-513, 2007.
[8] S. Wang, D. Chung, and J. H. Chung, "Self-sensing of damage in carbon fiber polymer–matrix composite cylinder by electrical resistance measurement," Journal of intelligent material systems and structures, vol. 17, pp. 57-62, 2006.
[9] S. Wen and D. Chung, "Damage monitoring of cement paste by electrical resistance measurement," Cement and Concrete Research, vol. 30, pp. 1979-1982, 2000.
[10] S. Wen and D. Chung, "Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement," Carbon, vol. 45, pp. 710-716, 2007.
[11] T.-C. Hou and J. P. Lynch, "Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components," in Smart Structures and Materials, 2005, pp. 419-429.
[12] M. Ohtsu, Acoustic Emission Testing: Basics for Research-Applications in Civil Engineering: Springer, 2008.
[13] A. Carpinteri, M. Corrado, and G. Lacidogna, "Heterogeneous materials in compression: Correlations between absorbed, released and acoustic emission energies," Engineering Failure Analysis, vol. 33, pp. 236-250, 2013.
[14] 鄭峯昇, "音射法於自癒性混凝土損傷評估與破壞模式之探討," 國立成功大學土木工程研究所碩士論文, 2014.
[15] D. G. Aggelis, "Classification of cracking mode in concrete by acoustic emission parameters," Mechanics Research Communications, vol. 38, pp. 153-157, 4// 2011.
[16] P. Daponte, F. Maceri, and R. S. Olivito, "Ultrasonic signal-processing techniques for the measurement of damage growth in structural materials," Instrumentation and Measurement, IEEE Transactions on, vol. 44, pp. 1003-1008, 1995.
[17] D.-J. Yoon, W. J. Weiss, and S. P. Shah, "Assessing damage in corroded reinforced concrete using acoustic emission," Journal of engineering mechanics, vol. 126, pp. 273-283, 2000.
[18] W. Punurai, "Cement-based Materials' characterization using ultrasonic attenuation," 2006.
[19] 邱家昌, "骨折癒合," 生物醫學, vol. 一, pp. 264-273, 2008.
[20] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, "Self-healing materials with microvascular networks," Nature materials, vol. 6, pp. 581-585, 2007.
[21] V. C. Li and E. Herbert, "Robust self-healing concrete for sustainable infrastructure," Journal of Advanced Concrete Technology, vol. 10, pp. 207-218, 2012.
[22] 黃兆龍, "混凝土性質與行為," 詹氏書局, 台北, 1997.
[23] C. Edvardsen, "Water permeability and autogenous healing of cracks in concrete," ACI Materials Journal, vol. 96, 1999.
[24] N. Hearn and C. Morley, "Self-sealing property of concrete—Experimental evidence," Materials and structures, vol. 30, pp. 404-411, 1997.
[25] C. Dry, "Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices," Smart Materials and Structures, vol. 3, p. 118, 1994.
[26] K. Van Tittelboom and N. De Belie, "Self-healing in cementitious materials—A review," Materials, vol. 6, pp. 2182-2217, 2013.
[27] V. Wiktor and H. M. Jonkers, "Quantification of crack-healing in novel bacteria-based self-healing concrete," Cement and Concrete Composites, vol. 33, pp. 763-770, 2011.
[28] K. Van Tittelboom, N. De Belie, D. Van Loo, and P. Jacobs, "Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent," Cement and Concrete Composites, vol. 33, pp. 497-505, 2011.
[29] Z. Yang, J. Hollar, X. He, and X. Shi, "A self-healing cementitious composite using oil core/silica gel shell microcapsules," Cement and Concrete Composites, vol. 33, pp. 506-512, 2011.
[30] K. Van Tittelboom, N. De Belie, W. De Muynck, and W. Verstraete, "Use of bacteria to repair cracks in concrete," Cement and Concrete Research, vol. 40, pp. 157-166, 2010.
[31] K. Van Breugel, "Is there a market for self-healing cement-based materials," in Proceedings of the first international conference on self-healing materials, 2007.
[32] M. Li, R. Ranade, L. Kan, and V. C. Li, "On improving the infrastructure service life using ECC to mitigate rebar corrosion," 2010.
[33] G. Keoleian, A. Kendall, J. Dettling, V. Smith, R. Chandler, M. Lepech, et al., "Life-cycle cost model for evaluating the sustainability of bridge decks," 2005.
[34] "Technical Data Sheet of Krystol Internal Membrane-KIM," K. I. Inc., Ed., ed, 2014.
[35] 林坤嶔, "水泥基材料自癒能力之力電學檢測評估," 國立成功大學土木工程研究所碩士論文, 2014.
[36] 黃彥霖, "含防水緩凝劑之纖維水泥砂漿工程性質與裂縫癒合探討," 國立成功大學土木工程研究所碩士論文, 2015.
[37] R. Spragg, Y. Bu, K. Snyder, D. Bentz, and J. Weiss, "Electrical testing of cement-based materials: role of testing techniques, sample conditioning, and accelerated curing," 2013.
[38] "Soundwel聲發射產品手冊--SAEU2S聲發射系統," 北京聲華興業科技有限公司, Ed., ed, 2012.
[39] X. Chen, W. Huang, and J. Zhou, "Effect of moisture content on compressive and split tensile strength of concrete," Indian Journal of Engineering & Materials Sciences, vol. 19, pp. 427-435, 2012.
[40] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Kdd, 1996, pp. 226-231.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw