進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1808201514511800
論文名稱(中文) 微型化自動細胞培養系統
論文名稱(英文) Miniaturized Automatic Cell Culture System
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 陳弘俊
研究生(英文) Hung-Chun Chen
學號 N26021602
學位類別 碩士
語文別 英文
論文頁數 48頁
口試委員 指導教授-張凌昇
口試委員-王明浩
口試委員-許藝菊
口試委員-王浩文
中文關鍵字 細胞培養  自動化  微型化 
英文關鍵字 cell culture  Miniaturization  Automatic 
學科別分類
中文摘要 最近幾年癌症已經變成最危險的疾病之一,人們往往為了追求事業成就而忽略了健康,導致癌症患者日益增多;因此癌症的檢測與治療遂成為一項不可忽視的議題。目前學界已發展多種檢驗癌細胞活性的測試,其中電性分析為逐漸嶄露頭角的方法;惟其無法做長時間的量測。因此本研究重點在於設計一種可整合於細胞晶片的微型化自動細胞培養系統。一般細胞培養所需控制的參數為溫度37 ℃、二氧化碳分壓百分之五以及高濕度,以下為塑造適合細胞生長環境之方法。本研究以薄型橡膠電熱片做為加熱源,輸入電壓維持恆定之下其終端溫度會趨於飽和,使得控溫變得相對簡易。而高濕度環境之主要目的為減少培養液的蒸發,本研究以壓克力遮罩做為屏障來阻絕氣體的逸散;遮罩於阻絕氣孔的同時亦將培養腔隔離成獨立的空間,在二氧化碳的部分,將定量之二氧化碳溶入水裡並注於培養腔之中來提供培養時所需的二氧化碳.選用微型幫浦來傳送液體來達到體積的縮減。除此之外在培養的腔室中加入量測培養液的電極,電極會將培養液的狀況轉換成電訊號之後再傳遞給幫浦驅動電路。因此這個細胞培養系統除了達到微型化之外也實現的自動補給培養液的功能。在體積上跟一般的傳統培箱相變成其1/105倍,以上所述經實際應用於細胞培養測試後,惟成長速度較慢外,其狀態與一般培養之結果相去不遠。
英文摘要 In recent years, Cancer has become one of most dangerous disease in the word. People tend to pursue career, while ignoring the importance of health. It leads an increasing number of cancer patients. Thus, a lot of research have been put forward to analysis the viability of cells in these decades. Among those methods, electric analysis develop rapidly. However, it is a defectiveness that electric analysis chips cannot culture cells on chip while facing a long term measurement. This study proposes a miniaturized automatic cell culture system to achieve those conditions. This system provide a saturated temperature by an electric heating sheet, a PMMA cover to avoid the gas evaporate, and using the CO2 solution to supply the CO2 gas for cell chamber. This system choose micropump to deliver the medium because of its mini scale. Moreover, the medium measuring electrodes were designed into the chamber to detect the medium and transfer signal to pump driving circuit automatically. In this case, this cell culture system not only reduce the size of the entire system to realize the miniaturization but also achieve the automatic culturing. After applying this proposed system and a normal incubator to culture cells respectively for several times, there is nearly no obvious difference in cell growth.
論文目次 中文摘要 I
ABSTRACT II
ACKNOWLEDGE III
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLE VIII
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Cell Culture 3
1.3 Tiny-scale Device 4
CHAPTER 2 DEVICE DESIGN 5
2.1 Hardware Design 5
2.1.1 PMMA Cover Design 6
2.1.2 Chamber Design 9
2.2 Electrodes Design 12
2.2.1 Interdigitated Electrodes 12
2.2.2 Medium Detector 15
2.3 Micropump 17
2.3.1 Peristaltic Pump 17
2.3.2 Driving Circuit 19
2.4 Miniaturization 23
2.5 Automation 25
CHAPTER 3 EXPERIMENTAL SETUPS 27
3.1 Chamber Fabrication 27
3.2 System Setup 30
3.3 Materials 32
3.4 Culturing Setup 34
CHAPTER 4 RESULTS AND DISCUSSION 37
4.1 Miniaturization 37
4.2 Medium Detector 39
4.3 Morphology 41
4.4 Difference of Impedance 43
CHAPTER 5 CONCLUSION AND FUTURE WORK 45
Reference 46
參考文獻 [1] "Cancer Facts & Figures 2013," Atlanta2013.
[2] G. K. Srivastava, R. Reinoso, A. K. Singh, I. Fernandez-Bueno, D. Hileeto, M. Martino, et al., "Trypan Blue staining method for quenching the autofluorescence of RPE cells for improving protein expression analysis," Experimental eye research, vol. 93, pp. 956-962, 2011.
[3] J. C. Stockert, A. Blázquez-Castro, M. Cañete, R. W. Horobin, and Á. Villanueva, "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets," Acta histochemica, vol. 114, pp. 785-796, 2012.
[4] B. Daniel and M. A. DeCoster, "Quantification of sPLA 2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining," Brain Research Protocols, vol. 13, pp. 144-150, 2004.
[5] K.-C. Lan and L.-S. Jang, "Integration of single-cell trapping and impedance measurement utilizing microwell electrodes," Biosensors and Bioelectronics, vol. 26, pp. 2025-2031, 2011.
[6] C.-C. Wang, K.-C. Lan, M.-K. Chen, M.-H. Wang, and L.-S. Jang, "Adjustable trapping position for single cells using voltage phase-controlled method," Biosensors and Bioelectronics, vol. 49, pp. 297-304, 2013.
[7] R. S. Shapiro and L. E. Cowen, "Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing," MBio, vol. 3, pp. e00238-12, 2012.
[8] V. A. Robert and A. Casadevall, "Vertebrate endothermy restricts most fungi as potential pathogens," Journal of Infectious Diseases, vol. 200, pp. 1623-1626, 2009.
[9] A. Manz, N. Graber, and H. á. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[10] G. Sehra, M. Cole, and J. W. Gardner, "Miniature taste sensing system based on dual SH-SAW sensor device: an electronic tongue," Sensors and Actuators B: Chemical, vol. 103, pp. 233-239, 2004.
[11] W.-C. Lin, "微型化細胞培養系統," 成功大學電機工程學系學位論文, pp. 1-60, 2014.
[12] P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. O. De Beeck, K. Baert, et al., "Nanoscaled interdigitated electrode arrays for biochemical sensors," Sensors and Actuators B: Chemical, vol. 49, pp. 73-80, 1998.
[13] A. Newman, K. Hunter, and W. Stanbro, "The capacitive affinity sensor: a new biosensor," in Proc. 2nd Int. Meeting on Chemical Sensors, Bordeaux, 1986, pp. 596-598.
[14] R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, and B. Wolf, "Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures," Biosensors and Bioelectronics, vol. 12, pp. 29-41, 1997.
[15] M. Morita, O. Niwa, and T. Horiuchi, "Interdigitated array microelectrodes as electrochemical sensors," Electrochimica acta, vol. 42, pp. 3177-3183, 1997.
[16] F. Starzyk, "Parametrisation of interdigit comb capacitor for dielectric impedance spectroscopy," Archives of Materials Science and Engineering, vol. 34, pp. 31-34, 2008.
[17] Y. Wang, N. Chong, Y. Cheng, H. Chan, and C. Choy, "Dependence of capacitance on electrode configuration for ferroelectric films with interdigital electrodes," Microelectronic engineering, vol. 66, pp. 880-886, 2003.
[18] A. A. Nassr, W. H. Ahmed, and W. W. El-Dakhakhni, "Coplanar capacitance sensors for detecting water intrusion in composite structures," Measurement science and technology, vol. 19, p. 075702, 2008.
[19] J. Hong, D. S. Yoon, M.-I. Park, J. Choi, T. S. Kim, G. Im, et al., "A dielectric biosensor using the capacitance change with AC frequency integrated on glass substrates," Japanese journal of applied physics, vol. 43, p. 5639, 2004.
[20] A. Mamishev, A. Takahashi, Y. Du, B. Lesieutre, and M. Zahn, "Parameter estimation in dielectrometry measurements," Journal of Electrostatics, vol. 56, pp. 465-492, 2002.
[21] A. V. Mamishev, M. Zahn, B. C. Lesieutre, and B. A. Berdnikov, "Influence of geometric parameters on characteristics of an interdigital dielectrometry sensor," in Electrical Insulation and Dielectric Phenomena, 1996., IEEE 1996 Annual Report of the Conference on, 1996, pp. 550-553.
[22] B. C. Lesieutre, A. V. Mamishev, Y. Du, E. Keskiner, M. Zahn, and G. C. Verghese, "Forward and inverse parameter estimation algorithms of interdigital dielectrometry sensors," Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 8, pp. 577-588, 2001.
[23] H. Van Lintel, F. Van de Pol, and S. Bouwstra, "A piezoelectric micropump based on micromachining of silicon," Sensors and actuators, vol. 15, pp. 153-167, 1988.
[24] L.-S. Jang, Y.-J. Li, S.-J. Lin, Y.-C. Hsu, W.-S. Yao, M.-C. Tsai, et al., "A stand-alone peristaltic micropump based on piezoelectric actuation," Biomedical microdevices, vol. 9, pp. 185-194, 2007.
[25] F. Van de Pol, H. Van Lintel, M. Elwenspoek, and J. Fluitman, "A thermopneumatic micropump based on micro-engineering techniques," Sensors and Actuators A: Physical, vol. 21, pp. 198-202, 1990.
[26] T. T. Nguyen and N. S. Goo, "Development of a peristaltic micropump for bio-medical applications based on mini LIPCA," Journal of Bionic Engineering, vol. 5, pp. 135-141, 2008.
[27] R. Rapp, W. Schomburg, D. Maas, J. Schulz, and W. Stark, "LIGA micropump for gases and liquids," Sensors and Actuators A: Physical, vol. 40, pp. 57-61, 1994.
[28] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, "A bidirectional silicon micropump," Sensors and Actuators A: Physical, vol. 50, pp. 81-86, 1995.
[29] B. Husband, M. Bu, A. G. Evans, and T. Melvin, "Investigation for the operation of an integrated peristaltic micropump," Journal of Micromechanics and Microengineering, vol. 14, p. S64, 2004.
[30] D.-S. Lee, J. S. Ko, and Y. T. Kim, "Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance," Thin Solid Films, vol. 468, pp. 285-290, 2004.
[31] J. G. Smits, "Piezoelectric micropump with three valves working peristaltically," Sensors and Actuators A: Physical, vol. 21, pp. 203-206, 1990.
[32] B. Husband, M. Bu, V. Apostolopoulos, T. Melvin, and A. Evans, "Novel actuation of an integrated peristaltic micropump," Microelectronic Engineering, vol. 73, pp. 858-863, 2004.
[33] 黃正達, "應用昇壓型轉換器於可攜式壓電蠕動式微幫浦之驅動電路," 碩士, 電機工程學系碩博士班, 國立成功大學, 台南市, 2009.
[34] C.-S. Chao, P.-C. Huang, M.-K. Chen, and L.-S. Jang, "Design and analysis of charge-recovery driving circuits for portable peristaltic micropumps with piezoelectric actuators," Sensors and Actuators A: Physical, vol. 168, pp. 313-319, 2011.
[35] L.-S. Jang and Y.-C. Yu, "Peristaltic micropump system with piezoelectric actuators," Microsystem Technologies, vol. 14, pp. 241-248, 2008.
[36] M. E. Kempner and R. A. Felder, "A review of cell culture automation," Journal of the Association for Laboratory Automation, vol. 7, pp. 56-62, 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw