進階搜尋


下載電子全文  
系統識別號 U0026-1808201418592500
論文名稱(中文) 微型化細胞培養系統
論文名稱(英文) Miniaturized Cell Culture System
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 林維哲
研究生(英文) Wei-Che Lin
學號 n26010334
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 指導教授-張凌昇
口試委員-王明浩
口試委員-王浩文
口試委員-許藝菊
中文關鍵字 細胞培養系統  聚二甲基矽氧烷  微流道  二氧化碳控制 
英文關鍵字 Cell Culture System  Polydimethylsiloxane  Microfluidic Channel  CO2 Quantity Control 
學科別分類
中文摘要 在這功利主義的社會,人們往往為了追求事業成就而忽略了健康,導致癌症患者日益增多;因此癌症的檢測與治療遂成為一項不可忽視的議題。目前學界已發展多種檢驗癌細胞活性的測試,其中電性分析為逐漸嶄露頭角的方法;惟其無法做長時間的量測。因此本研究重點在於設計一種可整合於細胞晶片的微型化細胞培養系統。微型培養腔之主體採用聚二甲基矽氧烷為材料,其優於其他常見聚合物的原因為生物相容性高、價格低廉以及製程簡易;在此同時,防水並且透氣的特性在立體培養結構上具有極大的優勢。一般細胞培養所需控制的參數為溫度37 ℃、二氧化碳分壓百分之五以及高濕度,以下為塑造適合細胞生長環境之方法。本研究以薄型橡膠電熱片做為加熱源,輸入電壓維持恆定之下其終端溫度會趨於飽和,使得控溫變得相對簡易;輔以高導熱係數銅片為平台基材,溫度更可快速均勻分佈。而高濕度環境之主要目的為減少培養液的蒸發,本研究以壓克力遮罩做為屏障來阻絕聚二甲基矽氧烷之氣孔,在減少氣體交換的情形之下其抑制蒸發的效果與提高濕度是接近的;遮罩於阻絕氣孔的同時亦將培養腔隔離成獨立的空間,藉此為基礎,本研究將以材料的孔隙空間來調節二氧化碳。聚二甲基矽氧烷經過雷射共軛焦顯微鏡掃瞄表面孔隙分布之後,將統整出之孔隙率換算為總孔隙體積,並且進一步以凡德瓦方程式推導百分之五的分壓所需之二氧化碳總量。因操作體積小,流體供應比起氣體容易控制,因此本研究採用去離子水做為載體,藉由pH值的轉換運算,將此定量之二氧化碳溶入水裡並注於培養腔之中;其低溶解度使二氧化碳自水中釋出,藉以達到控制二氧化碳之目的。以上所述經實際應用於細胞培養測試後,惟成長速度較慢外,其狀態與一般培養之結果相去不遠。
英文摘要 Cancer has become more and more common in this era; therefore, a lot of assays have been put forward to analyze the viability of cells in these decades. Among those methods, electric analysis is more developed. However, it is an imperfection that electric analysis chips cannot culture cells on chip while facing a long term measurement. In a general cell culturing, temperature, humidity and CO2 partial pressure are factors need to be concerned. This study proposes a miniaturized cell culture system to achieve those conditions. The heating source herein is an electric heating sheet that can produce saturated temperature with a constant input voltage. It also has a thin thickness which aid scale decreasing. Polydimethylsiloxane (PDMS) is used for forming chamber because it is biocompatible and gas-permeable. Instead of raising humidity to reduce evaporation, here use a polymethylmethacrylate (PMMA) cover to isolate the chamber by blocking up the gas paths of PDMS. This action can make the chamber insulated from the atmosphere and prevent the escaping of vapor. Based on that, the pore spaces can be used to control and retain the CO2 quantity. Apply laser confocal microscopy and Van der Waals equation to figure out the porosity and the needed quantity. Then take deionized (DI) water as the carrier for transporting CO2 where the dissolved quantity is calibrated by pH value. This solution will be injected into the chamber and release CO2. After applying this proposed system and a normal incubator to culture cells respectively for several times, there is nearly no obvious difference in cell growth.
論文目次 中文摘要 I
ABSTRACT II
AKNOWLEDGEMENT III
CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Cell Culture 3
1.3 Tiny-scale Device 4
1.4 Polydimethylsiloxane 5
CHAPTER 2 DEVICE DESIGN 7
2.1 Temperature Control 7
2.2 Reduction of Evaporation 13
2.3 CO2 Quantity Control 22
2.3.1 Previous Studies 22
2.3.2 pH Transformation 24
2.3.3 Porosity of PDMS 29
2.3.4 Chamber Parameters 33
CHAPTER 3 RELATIVE WORKS 37
3.1 Chamber Fabrication 37
3.2 System Setup 40
3.3 Materials 42
3.4 Culturing Setup 44
CHAPTER 4 RESULT AND DISCUSSION 47
4.1 CO2 and Evaporation 47
4.2 Comparison Analysis 50
4.2.1 Morphology 50
4.2.2 Counts 52
CHAPTER 5 CONCLUSION AND FUTURE WORK 54
REFERENCE 55
參考文獻 [1] American Cancer Society Inc., "Cancer Facts & Figures 2013," Atlanta, 2013.
[2] J. C. Stockert, A. Blázquez-Castro, M. Ca˜nete and R. W. Horobin, "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets," Acta Histochemica, vol. 114, pp. 785-796, 2012.
[3] Y. Li, W. Huang, S. Huang, J. Du and C. Huang, "Screening of anti-cancer agent using zebrafish: Comparison with the MTT assay," Biochemical and Biophysical Research Communications, vol. 422, pp. 85-90, 2012.
[4] R. Scherließ, "The MTT assay as tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells," International Journal of Pharmaceutics, vol. 411, pp. 98-105, 2011.
[5] B. Daniel and M. A. DeCoster, "Quantification of sPLA2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining," Brain Research Protocols, vol. 13, pp. 144-150, 2004.
[6] T. Gichner, A. Mukherjee and J. Velem´ınsk´y, "DNA staining with the fluorochromes EtBr, DAPI and YOYO-1 in the comet assay with tobacco plants after treatment with ethyl methanesulphonate, hyperthermia and DNase-I," Mutation Research, vol. 605, pp. 17-21, 2006.
[7] G. K. Srivastava, R. Reinoso, A. K. Singh, I. Fernandez-Bueno, D. Hileeto, M. Martino, M. T. Garcia-Gutierrez, J. M. P. Merino, N. F. Alonso, A. Corell and J. C. Pastor, "Trypan Blue staining method for quenching the autofluorescence of RPE cells for improving protein expression analysis," Experimental Eye Research, vol. 93, pp. 956-962, 2011.
[8] H. L. Yang, C. S. Chen, W. H. Chang, F. J. Lu, Y. C. Lai, C. C. Chen, T. H. Hseu, C. T. Kuo and Y. C. Hseu, "Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata," Cancer Letters, vol. 231, pp. 215-227, 2006.
[9] Wikimedia Foundation, Inc., "Trypan blue," Wikimedia Foundation, Inc., [Online]. Available: http://en.wikipedia.org/wiki/Trypan_blue. [Accessed 5 8 2013].
[10] P. M. Goodwin, R. L. Affleck, W. P. Ambroset, J. N. Demas, J. H. Jett, J. C. Martin, L. J. Reha-Krantz, D. J. Semin, J. A. Schecker, M. Wu and R. A. Keller, "Progress Towards DNA Sequencing at the Single Molecule Level," Experimental Technique of Physics, 30 10 1995.
[11] K. C. Lan and L. S. Jang, "Integration of single-cell trapping and impedance measurement utilizing microwell electrodes," Biosensors and Bioelectronics, vol. 26, pp. 2025-2031, 2011.
[12] C. C. Wang, K. C. Lan, M. K. Chen, M. H. Wang and L. S. Jang, "Adjustable trapping position for single cells using voltage phase-controlled method," Biosensors and Bioelectronics, vol. 49, pp. 297-304, 2013.
[13] Z. R. Xu, C. G. Yang, C. H. Liu, Z. Zhou, J. Fang and J. H. Wang, "An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture," Talanta, vol. 80, pp. 1088-1093, 2010.
[14] M. Marimuthu and S. Kim, "Pumpless steady-flow microfluidic chip for cell culture," Analytical Biochemistry, vol. 437, pp. 161-163, 2013.
[15] K. Z. "kowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko and Z. B. zka, "Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip," Biosensors and Bioelectronics, vol. 40, pp. 68-74, 2013.
[16] S. P. Forry and L. E. Locascio, "On-chip CO2 control for microfluidic cell culture," Lab Chip, vol. 11, pp. 4041-4046, 2011.
[17] R. S. Shapiro and L. E. Cowen, "Thermal Control of Microbial Development and Virulence: Molecular Mechanisms of Microbial Temperature Sensing," mBio, vol. 3, pp. 1-6, 2012.
[18] V. A. Robert and A. Casadevall, "Vertebrate Endothermy Restricts Most Fungi as Potential Pathogens," The Journal of Infectious Diseases, vol. 200, pp. 1623-1626, 2009.
[19] A. Casadevall, "Fungal virulence, vertebrate endothermy, and dinosaur extinction: is there a connection?," Fungal Genetics and Biology, vol. 42, pp. 98-106, 2005.
[20] N. G. A. MANZ and H. M. WIDMER, "Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing," Sensors and Actuators, pp. 244-248, 1990.
[21] J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, Microsensors, MEMS, and Smart Devices, Wiley, 2001.
[22] P. Harms, Y. Kostov and G. Rao, "Bioprocess monitoring," Current Opinion in Biotechnology, vol. 13, p. 124–127, 2002.
[23] P. Liepold, H. Wieder, H. Hillebrandt, A. Friebel and G. Hartwich, "DNA-arrays with electrical detection: A label-free low cost technology for routine use in life sciences and diagnostics," Bioelectrochemistry, vol. 67, pp. 143-150, 2005.
[24] M. Ionescu, B. Winton, D. Wexler, R. Siegele, A. Deslantes, E. Stelcer, A. Atanacio and D. Cohen, "Enhanced biocompatibility of PDMS (polydimethylsiloxane) polymer films by ion irradiation," Nuclear Instruments and Methods in Physics Research B, vol. 273, pp. 161-163, 2012.
[25] S. G. Charati and S. A. Stern, "Diffusion of Gases in Silicone Polymers: Molecular Dynamics Simulations," Macromolecules, vol. 31, pp. 5529-5535, 1998.
[26] N. Szita, A. Zanzotto, P. Boccazzi, A. J. Sinskey, M. A. Schmidt and K. F. Jensen, "Monitoring of Cell Growth, Oxygen and pH in Microfermentors," Micro Total Analysis Systems, vol. J, pp. 7-9, 2002.
[27] T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman and I. Pinnau, "Gas Sorption, Diffusion, and Permeation in Poly(dimethylsiloxane)," Journal of Polymer Science: Part B: Polymer Physics, vol. 38, pp. 415-434, 2000.
[28] Wikimedia Foundation, Inc., "Thermal conductivities of the elements (data page)," [Online]. Available: http://en.wikipedia.org/wiki/Thermal_conductivities_of_the_elements_(data_page). [Accessed 17 2 2014].
[29] S. A. Stern, "The “Barrer” Permeability Unit," JOURNAL OF POLYMER SCIENCE, vol. 6, 1968.
[30] Wikimedia Foundation, Inc., "Carbonic acid," [Online]. Available: http://en.wikipedia.org/wiki/Carbonic_acid. [Accessed 6 5 2014].
[31] J. Bear, Dynamics of Fluids in Porosity Media, New York: American Elsevier Publishing Company, 1972, pp. 15-22.
[32] Wikimedia Foundation, Inc., "Van der Waals constants (data page)," [Online]. Available: http://en.wikipedia.org/wiki/Van_der_Waals_constants_(data_page). [Accessed 23 10 2013].
[33] ATCC, "B16-F10 ATCC ® CRL-6475™ Mus musculus skin melanoma," [Online]. Available: http://www.atcc.org/products/all/CRL-6475.aspx. [Accessed 28 5 2014].
[34] Wikimedia Foundation, Inc., "Extracellular matrix," [Online]. Available: http://en.wikipedia.org/wiki/Extracellular_matrix. [Accessed 19 6 2014].
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw