進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1808201415321200
論文名稱(中文) 有機記憶元件中介電層之載子儲存機制研究
論文名稱(英文) Carriers trapping mechanism in organic dielectrics for organic memory devices
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 周彥華
研究生(英文) Yen-Hua Chou
學號 L76011257
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-周維揚
口試委員-鄭弘隆
口試委員-唐富欽
口試委員-蔡明睿
中文關鍵字 十三烷基駢苯衍生物  有機薄膜電晶體  高分子介電層  電流增益  暫穩態 
英文關鍵字 PTCDI–C13H27  organic thin-film transistors  polymer dielectrics  current enhancement  metastable 
學科別分類
中文摘要 本論文研究N型有機薄膜電晶體不同官能機介電層之光寫入載子儲存機制探討及應用。本實驗以重摻雜矽基板作為元件基板及不同官能基之有機高分子材料作為介電層,並使用自行合成的十三烷基駢苯衍生物(N,N’-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide, PTCDI-C13H27)作為電晶體半導體層,探討元件通道在照射雷射光後之電特性變化。
本實驗是以不同介電層所製作的有機薄膜電晶體(Organic thin film transistor, OTFT)元件探討含有不同官能基介電層材料之OTFT元件在照射532nm綠光雷射產生之光電流增益以及記憶效應。其中含有苯酚官能基之介電層材料聚(4-乙基苯酚) (Poly(4-vinylphenol), PVP)所製作的OTFT元件,其通道照射532nm綠光雷射後可產生電流增益以及臨界電壓的位移現象,且此現象有長時間記憶效應。若僅含苯環官能基之介電層材料聚苯乙烯((Poly(styrene), PS)、僅含羫基官能基之介電層材料聚乙烯醇(Poly(vinyl alcohol), PVA)之OTFT元件,其通道照射532nm綠光雷射後則無電流增益以及臨界電壓的位移現象。此部分實驗可說明苯酚官能基與光激子造成的OTFT元件電流增益及長時間記憶效應有關。
為了進一步分析此結果,另一部分實驗以介電層材料為PS以及介電層材料為PVA製程之OTFT元件,在介電層參雜含有苯酚官能基之材料鄰苯二酚,可發現無苯酚官能基之介電層材料在參雜鄰苯二酚後,照射532nm綠光雷射其OTFT元件也擁有電流增益及長時間記憶效應。在更進一步的實驗中我們利用介電層為PVP 4 wt%之OTFT元件,與利用過量聚(三聚氰胺-co-甲醛)甲醇(Poly(melamine-co-formaldehude), methylated, PMF)交聯反應PVP上羫基官能基之C-PVP 4:8 wt%作為OTFT之介電層,來比較兩者照光後之電特性變化。從實驗結果可發現介電層PVP的羫基官能基被PMF反應掉之後,OTFT元件的電流增益及長時間記憶效應隨之消失。因此更進一步驗證此長時間的光致OTFT元件電流增益及長時間記憶效應來自於苯酚官能基。
英文摘要 In this thesis, the mechanism of photo-induced current enhancement and memory effect phenomena in N-type organic thin-film transistor (OTFT) were studied. An active layer, N,N’-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI–C13H27), and a dielectric buffer layer, a phenolic family group-based OTFTs, were used to observe the photo-induced current enhancement and occurrence of memory effect when a channel of OTFT was irradiated by a 532nm-wavelength laser.

To investigate these unusual phenomena, a polymer dielectrics with different functional group, namely, poly-4-vinylphenol (PVP), polystyrene (PS), and polyvinyl alcohol (PVA), were fabricated as dielectric buffer layers for OTFTs. The OTFT device with the PVP dielectric layer exhibited photo-induced current enhancement and memory effect phenomenon when the channel of OTFT was irradiated by a laser with 532nm wavelength. However, the devices with PS or PVA dielectric buffer layers did not exhibit these phenomena. These results indicated that only OTFTs with a phenol functional group in the dielectric buffer layer can exhibit photo-induced current enhancement and memory effect phenomenon.

To further confirm the photo-induced current enhancement and memory effect phenomenon, a phenolic family compound catechol was doped in PS and PVA dielectric buffer layers of OTFT devices. Both catechol-doped PS and PVA dielectric buffer layers of OTFTs showed photo-induced current enhancement and memory effect phenomenon. Finally, excess poly(melamine-co-formaldehyde) was crosslinked with PVP, in which the hydroxyl group was totally reacted. The photo-induced current enhancement and memory effect phenomenon were not observed on OTFT with the crosslinked PVP dielectric buffer layer.
論文目次 中文摘要 I
Abstract. III
致謝....... VIII
目錄....... X
表目錄... XIII
圖目錄... XV
第一章 簡介 1
1.1 有機半導體簡介 1
1.2 研究動機 3
第二章 原理 6
2.1 有機薄膜電機體基本構造 6
2.2 有機半導體載子傳輸機制 7
2.3 有機薄膜電晶體之操作原理 8
2.4 有機薄膜電晶體之基本公式及特性 9
第三章 烷基駢苯衍生物材料合成及有機薄膜電晶體之製程與使用儀器介紹 16
3.1 前言 16
3.2 實驗藥品介紹及有機半導體合成技術 17
3.2.1 實驗使用藥品 17
3.2.2 有機半導體合成技術 18
3.3 有機薄膜電晶體的製程 20
3.3.1 基板清洗 20
3.3.2 有機介電層製程 20
3.3.3 有機半導體與電極製程 22
第四章 有機記憶元件中介電層之載子儲存機制之研究 27
4.1 前言 27
4.2 電性分析 30
4.2.1 元件製程 30
4.2.2 OTFT電性量測參數與方式 31
4.2.3 電性量測結果 33
4.3 電容分析 42
4.3.1 元件製程 42
4.3.2 電容量測參數及方式 42
4.3.3 電容量測結果 43
4.5 實驗結論: 46
第五章 結論與未來展望 94
5.1 結論 94
5.2 未來展望 95
參考文獻 97
參考文獻 [1]. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channellayer”, Appl. Phys. Lett.,86, 013503 (2005)
[2]. M. Barra, F. Bloisi, A. Cassinese, F. V. Di Girolamo, L. Vicari, “Photoinduced long-term memory effects in n -type organic perylene transistors”, J. Appl. Phys., 106, 126105 (2009)
[3]. C. R. Newman, C. D. Frisbie, Demetrio A. da Silva Filho, Jean-Luc Bredas, P. C. Ewbank, Kent R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors”, Chem. Mater.,16, 4436 (2004)
[4]. 黃銘湧,具不同烷基駢苯衍生物之有機薄膜電晶體特性研究,國立成功大學碩士論文 (2007)
[5]. C. Rolin, K. Vasseur, S. Schols, M. Jouk, G. Duhoux, “High mobility electron-conducting thin-film transistor by organic vapor phase deposition”, Appl. Phys. Lett., 93, 033305 (2008)
[6]. H.-G. Jeon, J. Hattori, S. Kato, “Thermal treatment effects on N-alkyl perylene diimide thin-film transistors with different alkyl chain”, J. Appl. Phys., 108, 124512 (2010)
[7]. 黃佑沂,不同退火溫度之有機駢苯衍生物薄膜電晶體特性研究,國立成功大學碩士論文 (2007)
[8]. S. Ju, J. Li, J. Liu, P.-C. Chen, Y.-G. Ha, F. Ishikawa, H. Chang, C.Zhou, A. Facchetti, D. B. Jeans and T. J. Marks, “Transparent Active Matrix Organic Light-Emitting Diode Displays Driven by Nanowire Transistor Circuitry”, Nano. Lett.,8, 997 (2008)
[9]. T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel, S. D. Theiss, “Recent Progress in Organic Electronics : Materials, Devices, and Processes”, Chem. Mater., 16, 4413 (2004)
[10]. C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Adv. Mater., 14, 99 (2002)
[11]. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Herbard, R. M. Fleming, “C60thin-film transistors”, Appl. Phys. Lett., 67, 121 (1995)
[12]. S. Kobaysashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa,“C60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition”, Adv. Mater., 4, 371 (2003)
[13]. S. Kobaysashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, “Fabrication and characterization of C60 thin-film transistors with high field-effect mobility”, Appl. Phys. Lett., 82, 4581 (2003)
[14]. A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, “Organic n-type field-effect transistor”, Synth. Met., 66, 257 (1994)
[15]. J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks”, J.Am. Chem. Soc., 118, 11331 (1996)
[16]. Y. Oh, S. Pyo, M. H. Yi, Soon-Ki Kwon.,“N-type organic field-effect transistor using polymeric blend gate insulator with controlled surface properties”, Organic Electronics, 7, 77 (2006)
[17]. J. R. Ostrick, A. Dondabalapur, L. Torsi, A. J. Loninger, E. W. Lwol, T. M. Miller, “Conductivity-type anisotropy in molecular solids”, J. Appl. Phys., 81, 6804 (1997)
[18]. R. J. Chesterfield, J. C. Mckeen, C. R. Newman, P. C. Ewbank, D. A. da S. Filho, J.-L. Bredas, L. L. Miller, K. R. Mann, C. D. Frisbie, “Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature”, J. Phys. Chem. B., 108, 19281 (2004)
[19]. S. Tatermichi, M. Ichikawa, T. Koyama, Y. Taniguchi, “High mobility n-type thin-film transistors based on N,N,-ditridecyl perylene diimidewith thermal treatments”, Appl. Phys. Lett., 89, 112108 (2006)
[20]. J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wurthner, “Air-stable n -channel organic thin-film transistors with high field-effect mobility based on N,N,-bis(heptafluorobutyl)-3,4:9,10-perylene diimide”, Appl. Phys. Lett., 91, 212107 (2007)
[21]. H.-G. Jeon, J. Hattori, S. Kato, N. Oguma, N. Hirata, Y. Taniguchi, M. Ichikawa, “Thermal treatment effects on N-alkyl perylene diimide thin-film transistors withdifferent alkyl chain”, J. Appl. Phys., 108, 124512 (2010)
[22]. Y.-Y. Noh, D. Y. Kim, and K. Yase, “Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance”, J. Appl. Phys., 98, 074505 (2005)
[23]. C. H. Kim, S. H. Kim, S. H. Lee, S. H. Han, M. C. Choi, T. W. Jeon, and J. Jang, “Bimolecular recombination in solution-processed 6,13-bis(pentylphenylethynyl) pentacene thin-film transistor”, Appl. Phys. Lett., 94, 083308 (2009)
[24]. Y.-Y. Noh, J. Ghim, S.-J. Kang, K.-J. Baeg, D.-Y. Kim, and K. Yase, “Effect of light irradiation on the characteristics of organic field-effect transistors”, J. Appl. Phys., 100, 094501 (2006)
[25]. H. J. Queisser and D. E. Theodorou, “Decay kinetics of persistent photoconductivity in semiconductors”, Phys. Rev. B, 33, 4027 (1986)
[26]. K. S. Narayan and N. Kumar, “Light responsive polymer field-effect transistor”, Appl. Phys. Lett., 79, 1891 (2001)
[27]. S. Dutta and K. S. Narayan, “Gate‐Voltage Control of Optically‐Induced Charges and Memory Effects in Polymer Field‐Effect Transistors”, Adv. Mater., 16, 2151 (2004)
[28]. J. Borghetti, V. Derycke, S. Lenfant, P. Chevenier, A. Filoramo, M. Goffman, D. Villaume, and J. P. Bourgoin, “Optoelectronic Switch and Memory Devices Based on Polymer-Functionalized Carbon Nanotube Transistors”, Adv. Mater., 18, 2535 (2006)
[29]. C.-C. Chen, M.-Y. Chiu, J.-T. Sheu, and K.-H. Wei, “Photoresponses and memory effects in organic thin film transistors incorporating poly(3-hexylthiophene)/CdSe quantum dots”, Appl. Phys. Lett., 92, 143105 (2008)
[30]. 呂彥姿,光致有機薄膜電晶體電流增益與記憶效應之研究,國立成功大學碩士論文 (2013)
[31]. 林益生,以烷基駢苯衍生物作為主動層之有機薄膜電晶體,國立成功大學碩士論文 (2008)
[32]. D. R. T. Zahn, T. U. Kampen, H. Me'ndez, “Transport gap of organic semiconductors inorganic modified Schottky contacts”, Applied Surface Science, 212-213, 423 (2003)
[33]. J. Sun, Z. He, L. Mu, X. Han, J. Wang, B. Wang, C. Liang, Y. Wang, Y. Liu, S. Cao, “Preliminary photovoltaic response from a polymer containing p-vinylenephenylene amine backbone”, Solar Energy Materials and Solar Cells, 91, 1289 (2007)
[34]. M.-Z. Dai, Y.-L. Lin, H.-C. Lin, H.-W. Zan, K.-T. Chang, H.-F. Meng, J.-W. Liao, M.-J. Tsai, H. Cheng, “Highly Sensitive Ammonia Sensor with Organic Vertical Nanojunctions for Noninvasive Detection of Hepatic Injury”, Anal. Chem., 85, 3110 (2013)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw