進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1808201412503400
論文名稱(中文) Ti-7.5Mo合金鑄造相關性質比較
論文名稱(英文) Comparison of castibility properties of Ti-7.5Mo alloy
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 蕭宇倫
研究生(英文) Yu-Lun Hsiao
學號 N56011441
學位類別 碩士
語文別 中文
論文頁數 123頁
口試委員 指導教授-朱建平
指導教授-陳瑾惠
口試委員-李經維
中文關鍵字 Ti-7.5Mo合金  鑄造性質 
英文關鍵字 Ti-7.5Mo  castibilities 
學科別分類
中文摘要 由於本實驗室所研發之Ti-7.5Mo具有高生物相容性、高強度及低彈性模數等優良性質,希望可以取代目前在生醫領域有廣泛應用的商業用純鈦,由於商業用純鈦具有相對較低強度與高彈性模數的缺點,且商業用純鈦目前在牙科的活動局部假牙方面有相當大的市場,若是Ti-7.5Mo能在鑄造性質方面表現的較商業用純鈦優良,就可望逐漸取代商業用純鈦在牙科鑄造合金市場的地位。
且本實驗室也希望以此研發Ti-7.5Mo的經驗與中鋼的金屬專業結合,嘗試進行將Ti-7.5Mo量化生產的產業合作,並測試量產後的Ti-7.5Mo,其鑄造相關性質與機械性質等,是否與本實驗室自行配料生產的Ti-7.5Mo有所差異。
英文摘要 The Ti-7.5Mo alloy has great properties like biocompatibility, high strength and low modulus, and hopes to replace the c.p Ti which has wide range of applications in biomedical field. Because the c.p Ti has lower strength and high modulus, so if the Ti-7.5Mo has a better performance of castibilities than the c.p Ti, the Ti-7.5Mo can replace the position of the c.p Ti on the market of dental casting alloys.

The CMRT laboratory also want to combine the experience of studying the Ti-7.5Mo with the metal specialty of China Steel Corporation (CSC), and try to production the Ti-7.5Mo. The Ti-7.5Mo producted by China Steel Corporation (CSC) will compare with the Ti-7.5Mo producted by the CMRT laboratory in castibilities and mechanical properties.
論文目次 中文摘要 I
英文延伸摘要 II
誌謝 V
總目錄 VI
表目錄 XII
圖目錄 XIII
第一章 前言 1
1-1 研究背景 1
1-2 活動局部假牙概論 4
1-2-1 假牙的種類 4
1-2-2 活動局部假牙的材料 5
1-2-3 活動局部假牙專有名詞及其功能性簡略說明 6
1-3 鈦合金鑄造性質與活動部分假牙之相關性 8
1-4 研究動機 8
第二章 鈦及鈦合金 9
2-1 鈦的起源 9
2-2 鈦的性質 11
2-2-1 鈦的物理性質 11
2-2-2 鈦的化學性質 12
2-3 鈦合金的分類 13
2-3-1 α或near α型鈦合金 15
2-3-2 β型鈦合金 17
2-3-3 α+β型鈦合金 21
2-4 鈦合金的非平衡相 23
2-5 鈦與鈦合金的性質與應用 25
2-6 鈦的製備 28
2-6-1 亨特(Hunter)法 29
2-6-2 Crystal bar process 30
2-6-3 克羅爾(Kroll)法 31
2-6-4 FFC劍橋法 32
第三章 理論基礎與文獻回顧 34
3-1 鈦合金之設計理論 34
3-1-1 分離式多樣化叢集方式 34
3-1-2 電子結構的分子軌域計算 35
3-1-3 Mo當量方程式 37
3-2 金屬的強化機制 38
3-2-1 細晶粒強化 38
3-2-2 加工硬化 39
3-2-3 固溶強化 41
3-2-4 析出強化 41
3-3 拉伸破斷機制 46
3-3-1 脆性破斷(brittle fracture) 47
3-3-2 延性破斷(ductile fracture) 48
3-4 精密鑄造法 49
3-4-1 包埋鑄造法 51
3-4-2 製程步驟 56
3-5 鑄造性 (castability) 56
3-5-1 金屬流動性 (fluidity) 57
3-5-2 金屬流動性試驗法 58
3-5-3 影響金屬流動性的因素 61
3-6 Alpha Case 66
3-7 中鋼量產Ti-7.5Mo棒材之成分分析 71
第四章 實驗步驟(1) 73
4-1 實驗流程 73
4-2 試片製備 74
4-2-1 材料配置 74
4-2-2 熔煉及設備 74
4-2-3 鑄造及設備 77
4-3 鑄造性測試 78
4-3-1 載台製作 79
4-3-2 板狀/網狀/線狀模具製作 82
4-3-3 鑄造性測試 84
4-4 加工性測試 84
4-5 拋光性測試 85
第五章 結果與討論(1) 87
5-1 鑄造性 87
5-1-1 板狀 87
5-1-2 網狀 89
5-1-3 線狀 89
5-2 加工性 91
5-3 拋光性 92
第六章 結論(1) 94
第七章 實驗步驟(2) 95
7-1 實驗流程 95
7-2 試片製備 96
7-2-1 材料來源 96
7-2-2 鑄造及設備 96
7-2-3 拉伸/彎曲試片製備 97
7-3 鑄造性測試 97
7-4 加工性測試 99
7-5 拋光性測試 99
7-6 拉伸測試 101
7-7 彎曲測試 102
第八章 結果與討論(2) 104
8-1 鑄造性 104
8-1-1 板狀 104
8-1-2 網狀 106
8-1-3 線狀 108
8-2 加工性 109
8-3 拋光性 110
8-4 機械性質 112
8-4-1 拉伸測試 112
8-4-2 彎曲測試 114
第九章 結論(2) 117
第十章 總結 118
第十一章 參考資料 119
參考文獻 F. Sun, F. Prima, T. Gloriant, “High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor”, Materials Science and Engineering A 527 4262–4269, 2010.

D.A Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys” second edition, CRC Press, USA, 2004.

Rengen Ding, Ian Pjones and Huisheng Jiao, “Effect of Mo and Hf on the mechanical properties and microstructure of Nb–Ti–C alloys”, Elsevier B.V, 2007.

Sujata V.Bhat, “Biomaterials, 2nd Edition”, Alpha Science International, Ltd , 2005.

Y.L. Zhou, M. Niinomi, T. Akahori, “Decomposition of martensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys”, Materials Science and Engineering A, 371, 283-290, 2004.

G. He, M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus”, Materials Science and Engineering C 25 290 – 295, 2005.

Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.

Blackburn MJ and Williams JC., “Phase transformation in Ti-Mo and Ti-V alloys”, Trans Metal Soc AIME, 242:2461-9, 1968.

Mitsuo Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications”, journal of the Mechanical behavior of biomedical materials I, 30–42, 2008.

Cheal E, Spector M, Hayes W. “Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty”, J Orthop Res ; 10:405-422.1992.

Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annual International Biomaterial Symposium, April 20-24, 1974.

Davis R., “Martensitic transformations in Ti-Mo alloys”, Journal of materials science v14,P712-722, 1979.

Donachie Jr. M. J., Titanium A Technical Guide, ASM International, Metal Park Ohio, 1989.

Fedotov SG. “Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology , 2:871-81.1973.

Furuhara. T, Maki. T., Makino. T. “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy”, Journal of Materials Processing Technology, 117, 318-323, 2001.

Hansson S. “A conical implant–abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone”, Clin Implant Dent Relat Res , 2(1):33-41.2000.

Ho WF, Ju CP and Chern Lin JH. “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-22, 1999.

Koeneman JB, Hansen TM, Toal TR. “Effects of implant geometry position and boundary conditions on cancellous bone stresses: a finite element analysis”, Proceedings of Biomechanics Symposium, 120:117-120, 1991.

Lewis JL, Askew MJ, Wixson RL, Kramer GM, Tarr RR. “The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component”, J Bone Jt Surg, 66A:280-286, 1984.

Metal Park, Titanium a technical guide, ASM International, Oh44073., P.14, 1998.

Molchanova EK, “phase diagrams of titanium alloys” [transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translations, Jerusalem, 1965.

Smith W.F., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.

Wolff J, “Das Gesetz Der Transformation Der Knochen”, Hirshwald Verlag, Berlin, 1892.

X.H. Min, S. Emura, T. Nishimura, L. Zhang, S. Tamilselvi, K. Tsuchiya, K. Tsuzaki, “Effects of _ phase precipitation on crevice corrosion and tensile strength in Ti–15Mo alloy”, Materials Science and Engineering, 2009.

Pei-Wen Peng, Keng-Liang Ou, Chih-Yeh Chao, Yung-Ning Pan, Chau-Hsiang Wang, “Research of microstructure and mechanical behavior on duplex (α+β) Ti–4.8Al–2.5Mo–1.4V alloy”, Journal of Alloys and Compounds, 2009.

林家緯, “鑄造鈦-鉬合金疲勞性質研究”, 成功大學材料工程研究所博士論文, 2005.

林殿傑, “鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究”, 成功大學材料工程研究所博士論文, 2002.

林士哲, “熱機處理對鈦-鉬合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2008.

鄭文偉, “添加合金元素對鈦或鈦合金鑄造性及性質研究”, 成功大學材料工程研究所博士論文, 2002.

陳俊廷, “熱機處理對Ti-7.5Mo合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2010.

楊士德, “熱處理對鑄造合金Ti-7.5Mo機械性質的影響”, 成功大學材料工程研究所碩士論文, 2010.

朱胤碩, “熱機處理對鑄造Ti-7.5Mo合金結構與機械性質之研究
”, 成功大學材料工程研究所碩士論文, 2011.

王士瑋, “熱機處理對Ti-7.5Mo合金機械性質之影響”, 成功大學材料工程研究所碩士論文, 2012.

葉哲政/金屬中心, “生醫用金屬產業全局佈局與競爭策略”, 2005.

侯貫智, “環保成為海綿鈦製成的焦點議題”, ITIS產業評析專欄, 2008.

曾婉如, “鈦金屬”, 金屬材料月報, 2011.

施詠堯, “噴覆成型與連續鑄造6063鋁合金之微結構、機械性質與成型性質之研究”, 成功大學材料工程研究所碩士論文, 2003.

臧啟中, “添加釩對鈦-鉬-鋁合金機械性質與鑄造性的影響”, 成功大學材料工程研究所碩士論文, 2009.

許博淵, “熱機處理對T-7.5Mo合金結構與機械性質之影響”, 成功大學材料工程研究所碩士論文, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw