進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1808201411210400
論文名稱(中文) 應用於燃料電池混合動力供電系統疊接型直流-直流轉換器之數位控制晶片實作
論文名稱(英文) Implementation of Digital Controller Chip for Cascoded DC-DC Converter in Hybrid Fuel Cell System
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 陳泓昇
研究生(英文) Hung-Sheng Chen
電子信箱 riseresurrection@gmail.com
學號 n26010279
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-林志隆
口試委員-陳建富
口試委員-戴亞翔
口試委員-甘廣宙
口試委員-林宗志
口試委員-許世昌
口試委員-彭盛裕
中文關鍵字 脈波寬度調變  控制晶片  直流-直流轉換器  燃料電池  混合供電系統 
英文關鍵字 pulse width modulation (PWM)  controller chip  dc-dc converter  fuel cell  hybrid power system 
學科別分類
中文摘要 此論文延續了本實驗室的研究成果,實作出應用於燃料電池混合動力供電系統之三相脈波寬度調變之數位控制晶片,並且外部電路利用8位元數位類比轉換器架構偵測經由疊接型直流-直流轉換器所產生的類比感測訊號。除此之外,外部數位類比轉換器與數位控制晶片之間加入取樣與通道介面使感測值依序讀取至晶片。在訊號處理上為了降低硬體成本與提升硬體速度,採用解析度為20位元的定點數進行資料還原。在控制策略上使用單輸入模糊滑動平面控制器,以減少運算時間、降低硬體成本及縮小晶片面積。透過完整的電路元設計流程 (cell based design flow),並加入掃描鏈設計 (scan chain) 提升此數位控制晶片的可測試性,並通過國家晶片系統設計中心 (CIC) 評審核可,以台灣積體電路公司 (Taiwan semiconductor manufacturing company, TSMC) 0.18 m Mixed Signal CMOS 1P6M下線 (tapeout),晶片面積 (chip size) 為1.06 mm2,邏輯閘個數 (gate count) 為4892。除此之外,透過高階儀器Agilent 16822A Logic Analysis中的碼型產生器 (pattern generator, PG) 生成碼型訊號 (pattern) 以驗證此數位控制晶片的功能,所量測的結果與理論相符合,證明此數位控制晶片之功能性與正確性。
英文摘要 This work presents the architecture and design of a three-phase digital pulse width modulation (PWM) controller chip for 400-W cascoded dc-dc converter operating at continuous conduction mode in hybrid fuel cell system. A scheme for sensing three-output voltage and two-output current with an external 8-bit resolution analog-to-digital converter (ADC) is designed. To achieve the sensed values precisely, the data conversion to actual voltage and current from output of ADC is implemented which exploit the 20-bit fixed-point notation method. In addition, the suitable control strategy of modulation method is proposed with a single-input fuzzy logic controller (SIFLC) based on sliding surface method. The implementation techniques of digital controller are integrated on an application-specified integrated circuit (ASIC) in a complementary metal oxide silcon (CMOS) 0.18-m process on a 1.06-mm2 silcon area with power consumption of 4.340 mW and operated at the switching frequency of 16 kHz, which is comparable to state-of-the-art digital solutions. The overall implementation requires only 4892 logic elements which is fewer than 604 logic elements compared to conventional FLC owing to the simplicity of the SIFLC algorithm. For the exprimental system, two open-loop measurements were verified successfully for cascaded dc-dc converters in hybrid fuel cell system to achieve a steady-state output.
論文目次 中文摘要 i
英文摘要 ii
誌謝 viii
目錄 ix
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1. 研究背景 1
1.2. 研究動機與目的 5
1.3. 文獻探討 6
1.4. 論文架構簡介 9
第二章 燃料電池混合動力供電系統 10
2.1. 燃料電池混合動力供電系統之基本原理 10
2.2. 燃料電池混合動力供電系統之數位控制晶片架構 14
2.3. ADC控制區塊 16
2.4. 資料轉換控制區塊 18
2.5. 模糊滑動平面控制器區塊 19
2.6. 即時辨識迴路模式區塊 20
2.7. 即時辨識資料轉換電路區塊 23
2.8. 除頻器控制區塊 23
第三章 應用於燃料電池混合動力供電系統之數位控制晶片設計與硬體實現 24
3.1. 數位控制晶片設計流程 24
3.2. 數位控制晶片實體驗證 28
3.3. 數位控制晶片佈局圖與規格 30
3.4. 數位控制晶片佈局後模擬結果 32
第四章 晶片實驗與結果 39
4.1. 量測方法與環境 39
4.2. 實驗結果與驗證 46
第五章 結論與未來展望 54
5.1. 結論 54
5.2. 未來展望 55
參考文獻 56
附錄 64
參考文獻 [1] J. Bauman and M. Kazerani, “A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–Battery–Ultracapacitor Vehicles,” IEEE Trans. Vehicular Techno., vol. 57, no. 2, pp. 760-769, Mar. 2008.
[2] O. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, Modeling, and Implementation of a Multidevice Interleaved DC DC Converter for Fuel Cell Hybrid Electric Vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012.
[3] A. Ravey, B. Blunier, and A. Miraoui, “Control Strategies for Fuel Cell Based Hybrid Electric Vehicles From Offline to Online and Experimental Results,” IEEE Trans. Vehicular Techno., vol. 61, no. 6, pp. 2452-2457, Jul. 2012.
[4] M. H. Todorovic, L. Palma, and P. N. Enjeti, “Design of a Wide Input Range DC–DC Converter With a Robust Power Control Scheme Suitable for Fuel Cell Power Conversion,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1247-1255, Mar. 2008.
[5] X. Zhu, X. Li, G. Shen, and D. Xu, “Design of the Dynamic Power Compensation for PEMFC Distributed Power System,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1935-1944, Jun. 2010.
[6] M. Zandi, A. Payman, J. P. Martin, S. Pierfederici, B Davat and F. M. Tabar, “Energy Management of a Fuel Cell Supercapacitor Battery Power Source for Electric Vehicular Applications,” IEEE Trans. Vehicular Techno., vol. 60, no. 2, pp. 433-443, Feb. 2008.
[7] M. Tekin, D. Hissel, M. C. Péra, and J. M. Kauffmann, “Energy-Management Strategy for Embedded Fuel-Cell Systems Using Fuzzy Logic,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 595-603, Feb. 2007.
[8] Y. Cho, and J. S. Lai, “High-Efficiency Multiphase DC–DC Converter for Fuel-Cell-Powered Truck Auxiliary Power Unit,” IEEE Trans. Vehicular Techno., vol. 62, no. 6, pp. 2421-2429, Jul. 2013.
[9] A. S. Samosir and A. H. M. Yatim, “Implementation of Dynamic Evolution Control of Bidirectional DC–DC Converter for Interfacing Ultracapacitor Energy Storage to Fuel-Cell System,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3468-3473, Oct. 2010.
[10] W. Na, T. Park, T. Kim, and S. Kwak, “Light Fuel-Cell Hybrid Electric Vehicles Based on Predictive Controllers,” IEEE Trans. Vehicular Techno., vol. 60, no. 1, pp. 89-97, Jan. 2011.
[11] F. Nejabatkhah, S. Danyali, S. H. Hosseini, M. Sabahi, and S. M. Niapour, “Modeling and Control of a New Three-Input DC–DC Boost Converter for Hybrid PV FC Battery Power System,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309-2324, May. 2012.
[12] Z. Jiang, and R. A. Dougal, “Synergetic Control of Power Converters for Pulse Current Charging of Advanced Batteries From a Fuel Cell Power Source,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 1140-1150, Jul. 2004.
[13] K. Wang, et al., “Bi-Directional DC-DC Converters for Fuel Cell Systems,” Proceeding of IEEE Workshop on Power Electronics in Transportation, 1998, pp.47-51.
[14] T. Matsumoto, N. Watanabe, et al., “Development of Fuel-Cell Hybrid Vehicle,” SAE 2002 World Congress, Paper No. 2002-01-0096.
[15] D. Liu and H. Li, “Dynamic Modeling and Control Design for Bidirectional DC–DC Converter for Fuel Cell Vehicles with Battery as Energy Storage Element,” in Conf. Rec. IEEE IAS Annu. Meeting, Oct. 2005, pp. 1632-1635.
[16] Y. Jia, R. Shibata, N. Yamamura, and M. Ishida, “Smoothed-power output supply system for battery of stand-alone renewable power system using EDLC,” in Proc. IPEMC Conf., Aug. 2006, pp. 769-773.
[17] P. Thounthong, S. Rael, and B. Davat, “Control Strategy of Fuel Cell and Supercapacitors Association for a Distributed Generation System,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3225-3233, Dec.2007.
[18] W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “Multicascoded Sources for a High-Efficiency Fuel-Cell Hybrid Power System in High-Voltage Application,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 931-942, Mar. 2011.
[19] F. Z. Peng, M. Shen, and K. Holland, “Application of Z-source Inverter for Traction Drive of Fuel Cell-Battery Hybrid Electric Vehicles,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1054-1061, May 2007.
[20] H. Kakigano, Y. Miura, T. Ise, and R. Uchida, “DC Micro-Grid for Super High Quality Distribution-System Configuration and Control of Distributed Generations and Energy Storage Devices,” in Proc. IEEE PESC, 2006, pp. 1-7.
[21] A. Payman, S. Pierfederici, and F. Meibody-Tabar, “Energy Management in a Fuel Cell/Supercapacitor/Multisource/Multiload Electrical Hybrid System,” IEEE Tran. Power Electron., vol. 24, no. 12, pp. 2681-2691, Dec. 2009.
[22] M. Marchesoni and C. Vacca, “New DC-DC Converter for Energy Storage System Interfacing in Fuel Cell Hybrid Electric Vehicles,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 301-308, Jan. 2007.
[23] B. J. Patella, A. Prodic´, A. Zirger and D. Maksimovic´, “High-Frequency Digital PWM Controller IC for DC–DC Converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 438-446, Jan. 2003.
[24] A. V. Peterchev, J. Xiao, and S.C, “Architecture and IC Implementation of a Digital VRM Controller,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 356-364, Jan. 2003.
[25] Z. Lukic´, N. Rahman, and A. Prodic´,“Multibit Σ–∆ PWM Digital Controller IC for DC–DC Converters Operating at Switching Frequencies Beyond 10 MHz,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1693-1707, Sep. 2007.
[26] A. Radi´c, Z. Luki´c, A. Prodi´c, and R. H. de Nie, “Minimum-Deviation Digital Controller IC for DC–DC Switch-Mode Power Supplies,” IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4281-4298, Sep. 2013.
[27] R. Priewasser, M. Agostinelli, C. Unterrieder, S. Marsili, and M. Huemer, “Modeling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation,” IEEE Trans. Power Electron., vol. 29, no. 1, Jan. 2014.
[28] F. Taeed, Z. Salam, and S. M. Ayob, “FPGA Implementation of a Single-Input Fuzzy Logic Controller for Boost Converter With the Absence of an External Analog-to-Digital Converter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1207-1218 Feb. 2012.
[29] H. F. Blanchette, T. O. Bachir, and J. P. David, “A State-Space Modeling Approach for the FPGA-Based Real-Time Simulation of High Switching Frequency Power Converters,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4555-4567, Dec. 2012.
[30] W. Zhang, Y. F. Liu, and B. Wu, “A New Duty Cycle Control Strategy for Power Factor Correction and FPGA Implementation,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1745-1753, Nov. 2006.
[31] Y. Fan, X. Hua, “A Fuzzy Control for a Fuel Cell Generation System based on Field Programmable Gate Array,” IEEE International Symposium on Power Electronics for Distributed Generation Systems, 2010, pp.769-772.
[32] K. Petrinec, M. Cirstea, K. Seare, C. Marinescu, “A Novel FPGA Fuel Cell System Controller Design,” International Conference on Optimization of Electrical and Electronic Equipment, 2008, pp. 401-406.
[33] T. Riipinen, O. Laakkonen, L. Lehonkoski, V. Väisänen, P. Silventoinen and O. Pyrhönen, “Design and Analysis of FPGA-based Control of a Fuel Cell Line Converter,” Conference of IEEE Industrial Electronics, 2009.
[34] J. Li, X. Wei, H. Dai, “Design and Implementation of RLS Identification Algorithm based on FPGA,” International Conference on Electronic Measurement & Instruments, 2009, pp. 363-366.
[35] M. Truntič, M. Milanovič, E. Vidal-Idiarte, C. E. Carrejo and C. Alonso, “Digital Current Mode and Voltage Control for the DC-DC Step-Up Converter based on the FPGA Technology,” Power Electronics and Motion Control Conference, 2010, pp. S9-13 - S9-17.
[36] A. Tisan, M. Cirstea, A. Buchman, A. Parera, S. Oniga, D. Ilea, “Holistic Modeling, Design and Optimal Digital Control of a Combined Renewable Power System,” IEEE International Symposium on Industrial Electronics, 2010, pp. 2733-2738.
[37] K. Petrinec and M. Cirstea, “Holistic Modelling of a Fuel Cell Power System and FPGA Controller using Handel-C,” Conference of IEEE Industrial Electronics, 2006, pp. 4951-4956.
[38] A. P. Ruiz and M. Cirstea, “Holistic Modelling of an Integrated Renewable Energy System Controller, Enabling Rapid Hardware Prototyping,” Conference of IEEE Industrial Electronics, 2009, pp. 2949-2954.
[39] Z. Z. Ye and M. M. Jovanovic, “Implementation and Performance Evaluation of DSP-Based Control for Constant-Frequency Discontinuous-Conduction-Mode Boost PFC Front End,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 98-107, Feb. 2005.
[40] X. Huang, X. Wang, T. Nergaard, J. S. Lai, X. Xu, and L. Zhu, “Parasitic Ringing and Design Issues of Digitally Controlled High Power Interleaved Boost Converters,” IEEE Trans. Power Electron., vol. 19, no. 56, pp. 1341-1352, Sep. 2004.
[41] A. Khaligh, A. M. Rahimi, Y. J. Lee, J. Cao, A. Emadi, S. D. Andrews, C. Robinson, and C. Finnerty, “Digital Control of an Isolated Active Hybrid Fuel Cell/Li-Ion Battery Power Supply,” IEEE Trans. Vehicular Techno., vol. 56, no. 6, pp. 3709-3721, Nov. 2007.
[42] O. Ellabban, O. Hegazy, J. V. Mierlo and P. Lataire, “Dual Loop Digital Control Design and Implementation of A DSP Based High Power Boost Converter in Fuel Cell Electric Vehicle,” International Conference on Optimization of Electrical and Electronic Equipment, 2010, pp. 610-617.
[43] A. Gebregergis, and P. Pillay, “Implementation of Fuel Cell Emulation on DSP and dSPACE Controllers in the Design of Power Electronic Converters,” IEEE Trans. Ind. Appli., vol. 46, no. 1, pp. 285-294, Jan. 2010.
[44] A. Kirubakaran, S. Jain, and R. K. Nema, “DSP-Controlled Power Electronic Interface for Fuel-Cell-Based Distributed Generation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3853-3864, Dec. 2011.
[45] M. M. Peretz and S. B. Yaakov, “Time-Domain Design of Digital Compensators for PWM DC-DC Converters,” IEEE Trans. Ind. Electron., vol. 27, no. 1, pp. 284-293, Jan. 2012.
[46] M. M. Peretz and S. B. Yaakov, “Time-Domain Identification of Pulse-Width Modulated Converters,” IET Power Electron., 2012, pp. 166-172.
[47] S. E. Beid and S. Doubabi, “DSP-Based Implementation of Fuzzy Output Tracking Control for a Boost Converter,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 196-209, Jan. 2014.
[48] F. Luo and D. Ma, “An Integrated Switching Power Converter with a Hybrid Pulse-Train/PWM Control,” IEEE International Symposium on Circuits and Systems, 2007, pp. 350-308.
[49] L. C. Chun, M. C. Kuo, “A 5V Output Voltage Boost Switching Converter with Hybrid Digital and Analog PWM Control,” IEEE International Symposium Low-Power Electron., Aug. 2010, pp. 99-104.
[50] T. Kuroki, T. Sato, K. Nishijima, and T. Nabeshima, “Digital-Analog Hybrid Controlled Converter with Interleaved PWM Method,” IEEE International Conference on Power Electronics and Drive Systems, 2013, pp.674-679.
[51] P. Z. Lin, C. M. Lin, C. F. Hsu and T. T. Le, “Type-2 Fuzzy Controller Design using a Sliding-Mode Approach for Application to DC–DC Converters,” IEE Proc., Electr. Power Nov., 2005, pp. 1482-1488.
[52] Yuanlong Li and Zhicheng Ji, “An Approach on T-S Fuzzy Model and Control of Buck-boost Converter,” in Proc. WCICA. Dig., 2008, pp.91-96.
[53] L. Guo, J. A. Hung, and R. M. Nelms, “Evaluation of DSP-Based PID and Fuzzy Controllers for DC–DC Converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2237-3348, Jun. 2009.
[54] A. Prodic, D. Maksimovic and R. W. Erickson, “Digital Controller Chip Set for Isolated DC Power Supplies,” IEEE Applied Power Electronics Conference and Exposition, Feb. 2003, pp. 866-872.
[55] A. Syed, E. Ahmed D. MaksimoviC and E. Alarcon, “Digital Pulse Width Modulator Architectures,” IEEE Power Electronics Specialists Conference, Jun. 2004, pp. 4689-4695.
[56] K. Wang, N. Rahman, Z. Lukić, and A. Prodić, “All-digital DPWM/DPFM Controller for Low-Power DC-DC Converters,” IEEE Applied Power Electronics Conference and Exposition, Mar. 2006, pp. 719-723.
[57] S. Guo, X. L. Shi, B. Allard, B. Li, Y. Gao, and Y. Ruan, “High-Resolution Digital PWM Controller for High-Frequency Low-Power SMPS,” European Conference on Power Electronics and Applications, Sep. 2009, pp. 1-9.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw