進階搜尋


 
系統識別號 U0026-1808201410533400
論文名稱(中文) 利用三維DNA-奈米微粒結構於表面增強拉曼光譜
論文名稱(英文) Surface Enhanced Raman Spectroscopy (SERS) using Three-Dimensional DNA-Nanoparticle Nanostructures
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 蘇泰維
研究生(英文) Tai-Wei Su
學號 P86001087
學位類別 碩士
語文別 英文
論文頁數 42頁
口試委員 口試委員-張憲彰
指導教授-陳奕帆
口試委員-莊漢聲
口試委員-林鼎晸
中文關鍵字 拉曼光譜  DNA自組裝  電漿子學  奈米金粒 
英文關鍵字 Raman spectroscopy  DNA self-assembly  plasmonics  gold nanoparticles 
學科別分類
中文摘要 近年來許多種電漿子結構被設計與合成出來供表面增強拉曼光譜應用。然而,要合成或製造具有高且可重複的拉曼增益效果的電漿子結構仍是一個挑戰。在本研究中,我們透過DNA自組裝合成一種可重複製作且可程式化的三維晶體結構供表面增強拉曼光譜量測應用。此結構中相鄰奈米粒子之間的距離可以精準地透過調整DNA的長度及包覆在金奈米粒子表面的銀外殼進行控制。我們合成出來的奈米結構的拉曼增益效果高達1011且具有再現性。除了量測固定在奈米結構上的FITC螢光物質的拉曼訊號之外,我們也成功地利用這個結構量測在溶液中自由游動的FITC分子的拉曼訊號。我們的實驗結果顯示本研究所開發的三維奈米微粒晶體結構的合成具有可程式化及再現性的特性,而且這些奈米結構可提供有效的拉曼增顯效果。
英文摘要 Various kinds of plasmonic nanostructures have been designed and synthesized for surface enhanced Raman spectroscopy (SERS) in recent years. However, synthesizing or manufacturing plasmonic nanostructures that have high and repeatable Raman enhancement remains challenging. In this study, we have developed a three-dimensional, reproducible, and programmable nanoparticle crystalline nanostructures through the self-assembly of DNA for SERS application. The distance between adjacent nanoparticles can be precisely controlled by adjusting the length of DNA and the thickness of silver shells coated on the gold nanoparticles. The SERS enhancement factor of the synthesized nanostructures was as high as 1011 and was reproducible. In addition to the FITC dyes immobilized on the nanostructures, Raman signals of the FITC dyes that flowed freely in buffer solutions were also successfully obtained. Our results show that the synthesis of the three-dimensional nanoparticle crystalline nanostructures developed in this study is programmable and reproducible and that the crystalline nanostructures can be used as efficient SERS substrates.
論文目次 Abstract ................................................................................................................................................ I
摘要 ..................................................................................................................................................... II
Contents ............................................................................................................................................. III
List of Figures .................................................................................................................................... IV
List of Tables ..................................................................................................................................... VII
Chapter1. Introduction ......................................................................................................................... 1
1-1 Raman spectroscopy .............................................................................................................. 1
1-1.1 History of Raman ........................................................................................................ 1
1-1.2 Theory of Raman scattering ........................................................................................ 2
1-2 Review of SERS .................................................................................................................... 5
1-3 Motivations and objectives .................................................................................................. 10
Chapter2. Materials and Methods ...................................................................................................... 11
2-1 Materials .............................................................................................................................. 11
2-2 Methods ............................................................................................................................... 11
2-2.1 DNA functionalized gold nanoparticles .................................................................... 11
2-2.2 DNA-guided AuNps crystallization .......................................................................... 12
2-2.3 Preparation of the Au-coated microscope slides and the sample for Raman measurement ...................................................................................................................... 15
2-2.4 Measurement of Raman scattering ........................................................................... 16
Chapter3. Results and Discussion ...................................................................................................... 18
3-1 Functionalization of AuNps with DNA ....................................................................... 18
3-2 Adding silver shells to AuNps ..................................................................................... 18
3-3 DNA-guided Ag-AuNp crystallization ........................................................................ 24
3-4 SERS measurement ..................................................................................................... 29
Chapter4. Conclusions and Future work ............................................................................................ 37
References ......................................................................................................................................... 38
Supporting information ...................................................................................................................... 41
Calculation of SERS enhancement factor (EF).......................................................................... 41
Small-Angle X-ray scattering (SAXS) experiment ................................................................... 42
參考文獻 1. Raman, C.V. & Krishnan, K.S. A new type of secondary radiation. Nature 121, 501-502 (1928).
2. Ager, J.W., Nalla, R.K., Breeden, K.L. & Ritchie, R.O. Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. J Biomed Opt 10, 40121-40127 (2005).
3. Schawlow, A.L. & Townes, C.H. Infrared and optical masers. Phys Rev 112, 1940-1949 (1958).
4. Delhaye, M. & Migeon, M. Interet de la concentration dun faisceau laser pour lexcitation De leffet Raman. Cr Acad Sci B Phys 262, 1513-1521 (1966).
5. Deneufeg.Mc, Dhamelin.P & Migeon, M. Raman spectrometry demonstration of mixed boron and phosphorus bromides. Cr Acad Sci C Chim 278, 17-20 (1974).
6. Kneipp, K. et al. Surface-enhanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes. Phys Rev Lett 84, 3470-3473 (2000).
7. Jeanmaire, D.L. & Vanduyne, R.P. Surface Raman spectroelectrochemistry part 1: heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84, 1-20 (1977).
8. Vosgrone, T. & Meixner, A.J. Surface and resonance enhanced micro-Raman spectroscopy of xanthene dyes at the single-molecule level. J Lumin 107, 13-20 (2004).
9. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S. Surface-enhanced Raman scattering and biophysics. J Phys-Condens Mat 14, 597-624 (2002).
10. Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem Soc Rev 27, 241-250 (1998).
11. Kelly, K.L., Coronado, E., Zhao, L.L. & Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 107, 668-677 (2003).
12. Lee, S.K., Maye, M.M., Zhang, Y.B., Gang, O. & van der Lelie, D. Controllable g5p-protein-directed aggregation of ssDNA-gold nanoparticles. Langmuir 25, 657-660 (2009).
13. Fraire, J.C., Perez, L.A. & Coronado, E.A. Rational design of plasmonic nanostructures for biomolecular detection: Interplay between theory and experiments. ACS nano 6, 3441-3452 (2012).
14. Hall, W.P., Ngatia, S.N. & Van Duyne, R.P. LSPR biosensor signal enhancement using nanoparticle-antibody conjugates. J Phys Chem C 115, 1410-1414 (2011).
15. Heeger, A.J. et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. P Natl Acad Sci USA 107, 10837-10841 (2010).
16. Graham, D., Thompson, D.G., Smith, W.E. & Faulds, K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3, 548-551 (2008).
17. Lim, D.K., Jeon, K.S., Kim, H.M., Nam, J.M. & Suh, Y.D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60-67 (2010).
18. Lee, J.H. et al. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS nano 6, 9574-9584 (2012).
19. Chen, S.Y. & Lazarides, A.A. Quantitative amplification of cy5 SERS in 'warm spots' created by plasmonic coupling in nanoparticle assemblies of controlled structure. J Phys Chem C 113, 12167-12175 (2009).
20. Wang, M., Jing, N., Chou, I.H., Cote, G.L. & Kameoka, J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 7, 630-632 (2007).
21. Wang, H., Levin, C.S. & Halas, N.J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 127, 14992-14993 (2005).
22. Sanchez-Iglesias, A. et al. Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today 5, 21-27 (2010).
23. Han, X.X. et al. Fluorescein isothiocyanate linked immunoabsorbent assay based on surface-enhanced resonance Raman scattering. Anal Chem 80, 3020-3024 (2008).
24. White, I.M., Yazdi, S.H. & Yu, W.W. Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis. Microfluid Nanofluid 13, 205-216 (2012).
25. Manimaran, M. & Jana, N.R. Detection of protein molecules by surface-enhanced Raman spectroscopy-based immunoassay using 2-5 nm gold nanoparticle lables. J Raman Spectrosc 38, 1326-1331 (2007).
26. Qian, X.M., Zhou, X. & Nie, S.M. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J Am Chem Soc 130, 14934-14935 (2008).
27. Lim, D.K. et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol 6, 452-460 (2011).
28. Wustholz, K.L. et al. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 132, 10903-10910 (2010).
29. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H. & LaBean, T.H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882-1884 (2003).
30. Shih, W.M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414-418 (2009).
31. Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7, 1641-1647 (2006).
32. Rothemund, P.W.K. DNA origami: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 (2007).
33. Park, S.H. et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett 5, 729-733 (2005).
34. Sharma, J., Chhabra, R., Liu, Y., Ke, Y. & Yan, H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. Engl. 45, 730-735 (2006).
35. Mirkin, C.A. et al. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett 8, 2341-2344 (2008).
36. Mirkin, C.A. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553-556 (2008).
37. Mirkin, C.A. et al. Assembly and organization processes in DNA-directed colloidal crystallization. P Natl Acad Sci USA 106, 10493-10498 (2009).
38. Macfarlane, R.J. et al. Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew Chem Int Ed Engl 49, 4589-4592 (2010).
39. Gang, O., Nykypanchuk, D., Maye, M.M. & van der Lelie, D. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549-552 (2008).
40. Maye, M.M., Kumara, M.T., Nykypanchuk, D., Sherman, W.B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol 5, 116-120 (2010).
41. Hill, H.D. & Mirkin, C.A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nature protocols 1, 324-336 (2006).
42. Xu, S.M., Yuan, H., Xu, A., Wang, J. & Wu, L.J. Rapid synthesis of stable and functional conjugates of DNA/gold Nanoparticles mediated by tween 80. Langmuir 27, 13629-13634 (2011).
43. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607-609 (1996).
44. Lee, J.H., Kim, G.H. & Nam, J.M. Directional synthesis and assembly of bimetallic nanosnowmen with DNA. J Am Chem Soc 134, 5456-5459 (2012).
45. Baena, J.R. & Lendl, B. Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 8, 534-539 (2004).
46. Zhang, D.M., Vangala, K., Jiang, D.P., Zou, S.G. & Pechan, T. Drop coating deposition Raman spectroscopy of fluorescein isothiocyanate labeled protein. Appl Spectrosc 64, 1078-1085 (2010).
47. Pawley, J.B. Handbook of biological confocal microscopy,Shinya Inoue Ed. Plenum Press; New York. (1995).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw