進階搜尋


下載電子全文  
系統識別號 U0026-1808201301465800
論文名稱(中文) 使用光鉗技術研發全光操控膽固醇液晶微馬達
論文名稱(英文) All-optical manipulation of cholestric liquid crystal micromotor using technique of optical tweezers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 余承諺
研究生(英文) Cheng-yen Yu
學號 l76004080
學位類別 碩士
語文別 英文
論文頁數 76頁
口試委員 指導教授-李佳榮
口試委員-莫定山
口試委員-李偉
口試委員-黃啟炎
口試委員-黃家逸
中文關鍵字 液晶微小球  液晶微滴  液晶微馬達  光鉗  液晶  膽固醇液晶 
英文關鍵字 optical tweezers  liquid crystal micromotor  liquid crystal microdroplets  LC  CLC 
學科別分類
中文摘要 本論文研究使用膽固醇液晶微球添加可光致同素異構化親手性材料,製作可全光調控微球轉動速度之染料摻雜膽固醇液晶微馬達元件。由於此膽固醇液晶微球之螺旋軸呈現軸對稱性分佈並且於球赤道位置產生缺陷,使得光鉗圓偏振光之角動量可傳遞給膽固醇液晶微球後造成微球轉動現象,藉由膽固醇液晶微球加入的可光致同素異構化親手性材料可經由紫外光照射下使得微球轉動速度變化。
本論文的研究分成兩個部份。在第一部份,我們先探討膽固醇液晶微球受紅光雷射(波長為660 nm、功率為100 mW)之光鉗作用下之轉速與微球螺距及直徑之相依關係;在第二部份,我們再探討,當有摻雜染料之膽固醇液晶微球受一道較弱紫外光(強度為21  82 mW/cm2)照射下,由於正向光致同素異構化反應,膽固醇液晶球內部偶氮親手性分子從棒狀trans態轉變至彎曲狀cis態時局部擾動液晶之秩序性,使得膽固醇液晶微球轉動能力逐漸下降。當紫外光強度提高至109.4mW/cm2時,偶氮親手性分子之光引致同素異構化反應急遽上升,在劇烈擾動膽固醇液晶微球內之螺旋結構之下,膽固醇液晶微球立即停止旋轉。關閉紫外光照射後,當作光鉗作用之長波長紅光雷射可引致反向回復之光同素異構化反應,偶氮親手性材料會從彎曲狀cis態回復至棒狀trans態,使得膽固醇液晶微球之軸對稱結構回復排列,此時膽固醇液晶微球轉動能力回增。因此,藉由照射弱或強紫外光,膽固醇液晶微球在光鉗作用下之轉動可控制行為有潛力應用在可全光調控或可全光開關之微馬達發展上。
英文摘要 This thesis aims to develop an all-optically controllable micromotors based on cholesteric liquid crystal (CLC) microdroplets added with a chiral azobenzenze. The CLC microdroplet shows an axial structure of helical axis with a ring-defect on the equator of the microdroplet such that the circularly polarized red beam of the optical tweezer may transfer its angular momentum to the microdroplet and then induce rotation motion. The irradiations of one UV beam and the beam of the optical tweezer may control reversibly the ability of rotation of the CLC micromotor.
The investigations in the thesis include two parts. In first part, we study the dependence of the rotational ability of the CLC micromotor manipulated by the red beam of the optical tweezer (wavelength: 660 nm, power: 100 mW) on the pitch and the diameter of the CLC microdroplet under the . In second part, a chiral azobenzene is added into the CLC microdroplet for studying the optical controllability of the micromotor. When the chiral azobenzene added CLC micromotor is irradiated by a weak UV beam (intensity: 21  82 mW/cm2), the chiral azobenzene molecules may change from rod-like trans isomers to curve cis ones, which may locally disturb the LC order and thus gradually decay the rotational ability of the CLC micromotor. Once the intensity of the UV irradiation increases up to 109.4mW/cm2, a large number of cis chiral azobenzene may rapidly generate to seriously disturb the microdroplet, which may quickly stop the rotation of the microsphere. The successive irradiation of the red beam of the optical tweezer following the UV irradiation may induce cistrans back isomerization of the chiral azobenzene, which may induce the recovery of the ordered CLC structure in the microdroplet and thus the restoration of the rotational ability of the micromotor. Therefore, the use of the irradiation of weak or strong UV light in controlling the rotational ability of the CLC microsphere under the manipulation of the optical tweezer is applicable to the development of the all-optically tunable or switchable micromotor.
論文目次 摘要 I
Abstract II
致謝 IV
Contents V
List of Figures VIII
List of Tables XIII
Chapter 1 Introduction 1
Chapter 2 Introduction to Liquid Crystals 4
2.1 Discovery of liquid crystals 4
2.2 Classification of liquid crystals 5
2.2.1 Lyotropic liquid crystals 5
2.2.2 Thermotropic liquid crystals 5
2.3 Physical properties of liquid crystals 11
2.3.1 Optical anisotropy and birefringence 11
2.3.2 Dielectric anisotropy 15
2.3.3 Elastic continuum theory of liquid crystals 16
Chapter 3 Related Theories of Cholesteric Liquid Crystals 17
3.1 Optical properties of cholesteric liquid crystals 17
3.2 Agents influencing pitch of cholesteric liquid crystal 18
3.2.1 Temperature 19
3.2.2 Magnetic field 19
3.2.3 Electric field 20
3.2.4 Optical field 22
3.3 Planar cholesteric liquid crystals  one-dimensional photonic crystals 23
3.4 Photosensitive materials 25
3.4.1 Photochromism 26
3.4.2 Mechanism of photochromism 26
3.4.3 Classification of photochromism 27
3.4.4 Photoisomerization of azobenzene derivatives 28
3.4.5 Photoisomerization of dye-doped cholesteric liquid crystals 30
3.5 Principle of optical tweezers 32
3.5.1 Ray-optics model 33
3.5.2 Force caused by a single optical ray based on ray-optics model 34
3.5.3 Force of the overall optical rays of the incident light on the particle 38
3.6 Theory for the rotation motion of a microdroplet embedded in liquid 40
Chapter 4 Sample Preparation and Experimental Setups 42
4.1 Materials 42
4.2 Sample Preparation 46
4.2.1 Cleaning of glass slides 47
4.2.2 Preparation of cholesteric liquid crystal or dye-doped cholesteric liquid crystal microdroplet mixture 48
4.2.3 The fabrication of empty cells 50
4.2.4 Injection of microdroplet mxtures and microdroplet samples completed 51
4.3 Experimental setups and measurement system 51
Chapter 5 Results and Discussion 56
5.1 Rotation of CLC microdroplets with various radii and natural pitches under the manipulation of optical tweezers 56
5.2 All-optical controllability of rotating azo-chiral-added CLC microdroplets 62
Chapter 6 Conclusion and Future Work 69
6.1 Conclusion 69
6.2 Future Work 70
List of References 72
參考文獻 [1] A.Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
[2] David G. Grier, ” A revolution in optical manipulation,” Nature 424, 810 (2003).
[3] Yuri Nakayama, Peter J. Pauzauskie, Aleksandra Radenovic, Robert M. Onorato, Richard J. Saykally,Jan Liphardt & Peidong Yang , ”Tunable nanowire nonlinear optical probe,” Nature 447, 1098 (2007).
[4] Yasuharu Arai, Ryohei Yasuda, Ken-ichirou Akashi,Yoshie Harada, Hidetake Miyata, Kazuhiko Kinosita Jr& Hiroyasu Itoh, ” Tying amolecular knot with optical tweezers,” Nature 399 ,446 (1999).
[5] Jin-Der Wen, Laura Lancaster, Courtney Hodges, Ana-Carolina Zeri, Shige H. Yoshimura, Harry F. Noller,Carlos Bustamante & Ignacio Tinoco Jr, ” Following translation by single ribosomes one codon at a time,” Nature 452, 598 (2008).
[6] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg & H. Rubinsztein-Dunlop, ” Optical alignment and spinning of laser-trappedmicroscopic particles,” Nature 395 , 621 (1998).
[7] T. G. Mason* and J. Bibette, ” Emulsification in Viscoelastic Media,” Phys. Rev. Lett. 77, 3481 (1996).
[8] Alberto Fernández-Nieves,Galder Cristobal,Veneranda Garcés-Chávez,Gabriel C.Spalding,Kishan Dholakia,and David A Weitz, ” Optically Anisotropic Colloids of Controllable Shape,” Adv. Mater. 17,680 (2005).
[9] Péter Galajda and Pál Ormos, ” Rotors produced and driven in laser tweezers with reversed direction of rotation,” Phys. Rev. Lett. 80, 4653 (2002).
[10] E. Higurashi, R. Sawada, and T. Ito, ” Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Phys. Rev. Lett. 72, 2953 (1998).
[11] Naoki Murazawa, Saulius Juodkazis and Hiroaki Misawa,” Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D: Appl. Phys. 38 , 2923 (2005).
[12] Naoki Murazawa, Saulius Juodkazis, Shigeki Matsuo, and Hiroaki Misawa, ” Control of the Molecular Alignment Inside Liquid-Crystal Droplets by Use of Laser Tweezers,” small 1, 656 (2005).
[13] Saulius Juodkazis, Masaya Shikata, Toshimasa Takahashi, Shigeki Matsuo, and Hiroaki Misawa, ” Fast optical switching by a laser-manipulated microdroplet of liquid crystal,” Phys. Rev. Lett. 74, 3627 (1999).
[14] Naoki Murazawa, Saulius Juodkazis, Hiroaki Misawa, ” Laser manipulation based on a light-induced molecular reordering”, Optics express 14, 2481 (2006 )
[15] Tiffany A. Wood, Helen F. Gleeson, Mark R. Dickinson, and Amanda J. Wright, ” Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets ,” Phys. Rev. Lett. 84, 4292 (2004).
[16] Naoki Murazawa, Saulius Juodkazis, and Hiroaki Misawa, ” Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77, 041704 (2008).
[17] N. Murazawa, S. Juodkazisa, and H. Misawa, ” Laser manipulation of a smectic liquid-crystal droplet,” Eur. Phys. J. E 20, 435 (2006).
[18] Marjan Mosallaeipour a b , Yashodhan Hatwalne b , N.V. Madhusudana b & Sharath Ananthamurthy a, ”Laser induced rotation of trapped chiral and achiral nematic droplets,” Journal of Modern Optics 57, 395 (2010).
[19] Y. Yang1, P. D. Brimicombe1, N. W. Roberts1, M. R. Dickinson1,M. Osipov2 and H. F. Gleeson1, ” Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Optics express 16,6877 (2008).
[20] Helen F Gleeson, Tiffany A Wood and Mark Dickinson, ” Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Phil. Trans. R. Soc. A , 364, 2789 (2006).
[21] Jennifer L. Sanders, Yiming Yang, Mark R. Dickinson and Helen F. Gleeson, ”Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation,” Phil. Trans. R. Soc. A 371, 20120265 (2013).
[22] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
[23] S. Chandrasekhar, Liquid Crystals (Cambridge University Press, New York, 1992).
[24] Letter from F. Reintzer to O. Lehmann, reported by H. Kelker, Mol. Cryst. Liq. Cryst. 21, 1 (1973).
[25] B. Bahadur, Liquid Crystals-Application and Uses Vol. 1 (World Scientific Publishing, Singapore, 1990).
[26] I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, New York, 1995).
[27] P. G. de Gennes,” Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Sol. State Commun. 6, 163 (1968).
[28] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281 (1968).
[29] L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer-Verlag, New York, 1994).
[30] Jonathan P. Dowling, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[31] V. I. Koop, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707 (1998).
[32] Amon Yariv and Pochi Yeh, Optical Waves in Crystals (John Wiley & Sons Press, New York, 1984).
[33] H. Bouas-Laurent and H. DÜRR, “Organic photochromism,” Pure Appl. Chem. 73, 639 (2001).
[34] 邱顯堂,“化工技術”第八卷第六期,150.
[35] I. Shimizu, H. Kokado, E. Inoue, “Photoreversible Photographic Systems. VI. Reverse Photochromism of 1,3,3-Trimethylspiro[indoline-2,2′-benzopyran]-8′-carboxylic Acid,” Bull. Chem. Soc. Jpn. 42, 1730 (1969).
[36] 楊博智,”含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討”,國立成功大學化工研究所碩士論文,(2003).
[37] Y. Hirshberg, “Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures. A Photochemical Memory Model,” J. Am. Chem. Soc. 78, 2304 (1956).
[38] 楊博智,”光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討”,國立成功大學化工研究所博士論文,(2007).
[39] R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593 (2003).
[40] M. Irie, “Diarylethenes for Memories and Switches,” Chem. Rev. 100, 1685 (2000).
[41] Eds. H. -S. Kitzerow and Ch. Bahr, Chirality in Liquid Crystals (Springer, New York, 2001).
[42] S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Express 18, 9496 (2010).
[43] 康星源,”利用PZT微控量測光鉗對微米球體的作用力”, 國立成功大學化工研究所博士論文,(2002).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw