進階搜尋


下載電子全文  
系統識別號 U0026-1808201215593800
論文名稱(中文) 使用蘭摩爾探針系統測量電子能量分布函數
論文名稱(英文) Development of Langmuir Probe for measuring electron energy distribution function
校院名稱 成功大學
系所名稱(中) 太空天文與電漿科學研究所
系所名稱(英) Assistant, Institute of Space, Astrophysical and Plasma Sciences(ISAPS)
學年度 100
學期 2
出版年 101
研究生(中文) 李宗憲
研究生(英文) Chung-Hsien Lee
電子信箱 c2060262@hotmail.com
學號 la6981052
學位類別 碩士
語文別 英文
論文頁數 87頁
口試委員 指導教授-陳秋榮
口試委員-小山孝一郎
口試委員-西田靖
中文關鍵字 蘭摩爾探針  電子能量分布 
英文關鍵字 langmuir probe  electron energy distribution function  contamination effect 
學科別分類
中文摘要 蘭摩爾探針已被廣泛用於測量電離層中的電子溫度和密度儀器,然而大多數量測的電子溫度和密度都假設電子能量分佈函數是Maxwellian。但是在電離層中,許多電漿的電子能量分佈函數不是Maxwellian,所以這些測量結果將會不適用,並且會誤導我們對電漿現象的瞭解。因此本篇論文的目的在於將蘭摩爾探針系統改良成可以在電離層中量測電子能量分佈函數的儀器,論文中將描述儀器設計原理、電路結構、以及儀器在實驗中的測試結果。另外,當探針表面有污染時,其量測的結果會不準確,是不可忽略的問題。因此在論文中我們也將討論探針表面有污染時的量測結果特徵,而且提出解決此問題的兩個簡單方法,並且在實驗中證實此兩個方法是有效的。
英文摘要 Langmuir probe is the most commonly used instrument for measuring the electron temperature and electron density in the ionosphere. The electron energy distribution function is even more important for understanding plasma dynamics. Many probe theories have been developed to determine the electron density and temperature by assuming that electrons have the Maxwellian energy distribution. However, if the electrons have a non-Maxwellian distribution, the measurement results will be misleading. Hence, the goal of this thesis is to improve the Langmuir probe system to measure the electron energy distribution function accurately. We will describe the Langmuir probe system design, electronic circuits, and the experimental results performed at the Space Plasma Operation Chamber of Plasma and Space Science Center, National Cheng Kung University. We also investigate the contamination effect of the probe electrode on the measured voltage-current characteristic curves. We then propose two simple methods to avoid the electrode contamination problem and confirm these methods by experimental results.
論文目次 致謝…………………………………………………………………………I
Abstract……………………………………………………………………II
摘要…………………………………………………………………………III
Contents……………………………………………………………………IV
List of figures……………………………………………………………VI
Chapter 1 Introduction
1.1 The purpose of this thesis……………………………………10
1.2 Ionosphere…………………………………………………………11
1.3 Plasma………………………………………………………………14
Chapter 2 Langmuir Probe Theory
2.1 Basics of Langmuir Probe………………………………………16
2.2 Electron current and electron energy distribution function…………………………………………………………………18
2.3 Maxwellian distribution function……………………………20
2.3.1 Electron density and temperature…………………………20
2.3.2 Electron saturation region…………………………………22
2.3.3 Ion current……………………………………………………23
Chapter 3 Design of Langmuir probe system
3.1 Principle for measuring electron distribution function…………………………………………………………………24
3.2 Langmuir probe circuit for measuring I-V characteristics………………………………………………………28
3.2.1 Pre-amplifier…………………………………………………28
3.2.2 Second stage amplifier………………………………………32
3.2.3 Capacitance effect of shielded cable……………………35
3.3 Langmuir probe circuit for measuring electron energy distribution function………………………………………………37
3.3.1 Operation for each part of circuit………………………39
3.3.2 Noise effect of the circuit………………………………46
Chapter 4 Contamination effect of Langmuir probe measurement
4.1 Features of electrode contamination………………………49
4.2 Numerical Solution………………………………………………52
4.3 Laboratory experimental setup and results………………55
4.3.1 Plasma chamber…………………………………………………56
4.3.2 Dependence of hysteresis on electron density and sweeping frequency of triangular voltage wave form…………60
4.3.3 Current response to stepwise voltage……………………63
4.3.4 I-V curve with fast voltage sweep………………………65
Chapter 5 Experiment on electron energy distribution function
5.1 Effect of electrode contamination on second harmonic measurement ……………………………………………………………69
5.2 Electron temperature and electron density………………71
5.3 Electron energy distribution function……………………74
5.4 Experiments in Space Plasma Operation Chamber (SPOC)…77
Chapter 6 Conclusion and future work……………………………83
References………………………………………………………………85
參考文獻 Allen, J. E. (1992), Phys. Scr. 45, 497.

Amatucci, W. E., P. W. Schuck, D. N. Walker, P. M. Kintner, S. Powell, B. Holback, and D. Leonhardt (2001), Rev. Sci. Instrum., 72, 4, 2052- 2057.

Bang, Jin Young, Aram Kim, and Chin Wook Chung (2010), Phys. Plasmas., 17, 064502.

Brace, L. H., R.F. Theis and A. Dalgarno (1973), Radio Science, 8, 341-348.

Brace, L. H. (1998), Particles, Geophysical Monograph, 102, American Geophysical Union.

Crowley, G., C. S. Fish, G. S. Burt, C. Swenson, A. Barjatya, and M. F. Larsen (2009), AGU Fall meeting, SM42A06.

D'Arcy, R. J. (1974), Dielectric impurities and surface instability in Langmuir probe measurements, J. Phys. D, 7, 1391-1401.

Hirao, K., and K. Oyama (1970), J. Geomag. Geoelectr., 22, 393-402.

Hirao, K., and K. Oyama (1973), Space Res., XIII, 489-492.

Holback, B., Ǻ. Jacksén, L. Ǻhlén, S.-E. Jansson, A. I.
Eriksson, J.-E. Wahlund, T. Carozzi, and J. Bergman (2001), Ann. Geophys., 19, 601-610.

Kakinami, Y., C. H. Lin, J. Y. Liu, M. Kamogawa, S. Watanabe, and M. Parrot (2011), J. Geophys. Res., 116, A05316, doi:10.1029/2010JA015632.

Krehbiel, J. P., L. H. Brace, R.F. Theis, J. R. Cutler, W. H. Pinkus and R. B. Kaplan (1980), IEEE Trans. Geosci. Remote Sens., GE-18, No. 1, 49.

Krehbiel, J. P., L. H. Brace, R. F.Theis, W. H. Pinkus , and R. B. Kaplan (1981), Space Sci. Instr., 5, 493–502.

Lagoutte, B. Poirier, P.-L. Blelly, Z. Kozacek, M. Salaquarda (2006), Planet. Space Sci., 54, 5, 472-486.

Langmuir, I., and H. M. Mott-Smith, Jr. (1924), Gen. Elec. Rev., 616.

Lebreton, J.-P. (2002), DCI-ISL, Technical note, ESTEC SCI-SO.

Lebreton, J.-P., S. Stverak, P. Travnicek, M. Maksimovic, D. Klinge, S. Merikallio, D. Lisowski, W., A. H. J. van den Berg, L. J. Hanekamp, and A. van Silfhout (1992), Surface and Interface Analysis, 19(1-12),93-99, ISSN0142-2421.

Mott-Smith, H. M., and I. Langmuir (1926), Phys. Rev., 28, 727-763, doi:10.1029/2002JA009494.

Oyama, K.-I. (1975), Characteristic of the contaminated Lagmuir probe and countermoves for its application to the space observations, Ph.D. thesis, ISAS Report No. 525.

Oyama, K. (1976), Planet. Space Sci., 24, 183-190.

Oyama, K., and K. Hirao (1976), Planet. Space Sci., 24, 900-904.

Oyama, K., and K. Hirao (1976), Rev. Sci. Instrum., 47, 1, 101-107.

Oyama, K., and K. Hirao (1979), Planet. Space Sci., 27,183-192.

Oyama, K.-I., and K. Hirao (1980), 28, 207-211.

Oyama, K.-I., M. Shimoyama, J. Y. Liu, and C. Z. Cheng (2011), Ann. Geophys., 29, 583-590.

Oyama, K.-I. , C. H. Lee, H. K. Fang, and C. Z. Cheng (2012), Rev. Sci. Instrum. 83, 055113

Reifman, A., and W. G. Dow (1949), Phys. Rev., 76, 987-988.

Spatenka, P., and H. Suhr (1993), Plasma Chemistry and Plasma Processing, 13, 555-566.

Stamate, E., and K. Ohe (2001), Appl. Phys. Lett., 78, 153-155, doi:10.1063/1.1338489.

Strele, D., S. Tscholl, C. Winkler, and R. Schrittwieser (1998), Contrib. Plasma Phys. 38, 110-114.

Sturges, D. J. (1973), Planet. Space Sci., 21, 6,doi:10.1016/0032-0633(73)90148-7.

Szuszczewicz, E. P., and J. C. Holmes (1975), J. Appl. Phys., 46, 5134-5139, doi:10.1063/1.32.1572.

Thomas, T. L., and E. L. Battle (1970), J. Appl. Phys., 41, 3428-3432, doi:10.1063/1.1659435

Wehner, G., and G. Medficus (1952), J. Appl. Phys., 23, 1035-1046, doi:10.1063/11.1702342.

Winkler, C., D. Strele, S. Tscholl, and R. Schrittwieser (2000), Plasma Phys. Control. Fusion, 42, 217- 223.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw