進階搜尋


 
系統識別號 U0026-1808201202113500
論文名稱(中文) 有限元素模型與光學同調斷層掃描術於周邊神經組織之黏彈性力學之研究
論文名稱(英文) Application of Finite Element modeling and Optical Coherence Tomography to Bioviscoelasticity of Ultra-structure of Peripheral Nerve
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 陳煜欣
研究生(英文) Yu-Hsin Chen
學號 N16991261
學位類別 碩士
語文別 中文
論文頁數 68頁
口試委員 指導教授-朱銘祥
共同指導教授-林宙晴
口試委員-何旭彬
中文關鍵字 黏彈理論  周邊神經組織  生物力學  逆向有限元素分析  光學同調斷層掃描顯微鏡 
英文關鍵字 viscoelastic theory  peripheral nerve tissues  biomechanics  inverse finite element analysis  Optical Coherence Tomography 
學科別分類
中文摘要 人體的神經系統扮演著重要的角色,一旦神經系統因為外傷或病變而受損,便會影響人們的日常生活。過去有關神經方面的研究較多是著重在病理學、電生理學或組織學上的探討,但有關於力學上的研究是比較少的。
本研究從生物力學的角度,藉由動物實驗研究白鼠坐骨神經的機械性質,以自行開發之動態量測系統,設計離體實驗,對坐骨神經進行橫向壓縮測試,並使用光學同調斷層掃描顯微鏡記錄實驗中的神經的橫截面影像。使用影像來建構二維有限元素模型,分別以彈性與超彈性材料模型分析神經得非線性彈性響應,以及黏彈模型(prony級數)分析神經的鬆弛響應。由逆向有限元素分析估測出神經內三層組織織彈性模數,結果顯示剛性大小依序為神經束膜、神經內膜,最小為神經外膜。此外也以逆向有限元素法估測出黏彈模型參數,發現只要使用兩項prony級數即可足以描述神經之黏滯特性。整合光學同調斷層掃描顯微鏡與非線性有限元素模型可以得到周邊神經之黏彈性質。
英文摘要 The nervous system plays an important role in human body such that, nerve injuries due to trauma or diseases can affect our daily life. Many studies have been devoted to the histology, pathology and electroneurophysiology of the nerve, but only few studies focused on its mechanical properties.
In this thesis, the mechanical characteristics of sciatic nervers of rats were investigated through animal experiments and finite element analysis. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on six sciatic nerve of rats. The Optical
Coherence Tomography(OCT) was utilized to six record the cross-section images of nerve during the testing. Two-dimensional finite element models was built based on the OCT images of nerves. For simplification linear elastic models and a hyperelastic model were employed to describe the stress-strain relationships of the endoneurium, the perineurium and the epineurium respectively. A generalized Maxwell model was employed to describe the stress relaxation response of nerve tissues.

The inverse finite element analysis was used to estimate the material parameters of the three layers of nerve. The result showed that the stiffness of the tissues in decreasing order of the perineurium, endoneurium, epineurium.
Prony series with two term is good enough for the viscoelasticity of the nerve tissues. The integration of OCT and nonlinear finite element modeling can yield the viscoelasticity of peripheral nerve.
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號表 ix
第一章 緒論 1
1.1神經系統簡介 1
1.2周邊神經組織解剖 1
1.3周邊神經材料之力學特性 4
1.4光學同調斷層掃描(Optical Coherence Tomography) 5
1.5文獻回顧 7
1.6研究動機與目的 11
1.7本文架構 12
第二章 周邊神經材料性質量測 13
2.1研究方法概述 13
2.2神經平板壓縮實驗平台系統 13
2.3神經動態壓縮實驗步驟 16
第三章 周邊神經之材料數學模型 17
3.1周邊神經材料性質 17
3.2超彈性模型 17
3.3線性黏彈模型 20
第四章 周邊神經有限元素模型 26
4.1有限元素軟體簡介 26
4.2神經組織幾何輪廓建構 27
4.3周邊神經材料性質 29
4.4元素選擇與邊界設定 29
4.5逆向有限元素法 31
第五章 結果 35
5.1神經橫截面影像 35
5.2周邊神經有限元素模擬結果 39
5.3真實神經壓縮影像與模擬神經受壓變形之比較 56
第六章 討論 60
6.1神經切片與光學同調影像之比較 60
6.2神經幾何外形 60
6.3神經組織有限元素模型與各分層特性 61
6.4神經形變圖 63
第七章 結論與未來工作 64
7.1結論 64
7.2未來工作 65
參考文獻 66

參考文獻 [1] http://www.mindcreators.com/NeuronBasics.htm.
[2] L. C. Junqueira, J. Carneiro, and R. O. Kelley, Basic histology: Appleton & Lange Stamford, CT, 1998.
[3] F. R. Bueno and S. B. Shah, "Implications of tensile loading for the tissue engineering of nerves," Tissue Engineering Part B: Reviews, vol. 14, No. 3, pp. 219-233, 2008.
[4] Y. Fung, Biomechanics: mechanical properties of living tissues vol. 12: Springer, 1993.
[5] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science, vol. 254, No. 5035, pp. 1178-1181, 1991.
[6] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Archives of Ophthalmology, vol. 113,
No. 3, pp. 325-332, 1995.
[7] E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Optics Letters, vol. 18, No. 21, pp. 1864-1866, 1993.
[8] J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study," Archives of Ophthalmology, vol. 113, No. 5, pp. 586-596, 1995.
[9] J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the human skin," Journal of the American Academy of Dermatology, vol. 37, No. 6, pp. 958-963, 1997.
[10] S. S. Sunderland, Nerves and nerve injuries. Churchill Livingstone: Edinburgh and New York, 1978.
[11] J. Haftek, "Stretch injury of peripheral nerve," The Journal of Bone and Joint Surgery, vol. 52, pp. 354-365, 1970.
[12] M. K. Kwan, E. J. Wall, J. Massie, and S. R. Garfin, "Strain, stress and stretch of peripheral nerve Rabbit experiments in vitro and in vivo," Acta Orthopaedica, vol. 63, No.3, pp. 267-272, 1992.
[13] E. J. Wall, M. K. Kwan, B. L. Rydevik, S. L. Y. Woo, and S. R. Garfin, "Stress relaxation of a peripheral nerve," The Journal of Hand Surgery, vol. 16, No.5, pp. 859-863, 1991.
[14] B. Rydevik and G. Lundborg, "Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression," Scandinavian Journal of Plastic and Reconstructive Surgery, vol. 11, No. 3, pp. 179-187, 1977.
[15] M. S. Ju, C. C. K. Lin, and C. W. Lin, "Transverse elasticity of rabbit sciatic nerves tested by in vitro compression," Journal of the Chinese Institute of Engineers, vol. 27, No. 27, pp. 965-971, 2004.
[16] M. S. Ju, C. C. K. Lin, J. L. Fan, and R. J. Chen, "Transverse elasticity and blood perfusion of sciatic nerves under in situ circular compression," Journal of Biomechanics, vol. 39, No. 1, pp. 97-102, 2006.
[17] R. J. Chen, C. C. K. Lin, and M. S. Ju, "In situ biomechanical properties of normal and diabetic nerves: An efficient quasi-linear viscoelastic approach," Journal of Biomechanics, vol. 43, No.6, pp. 1118-1124, 2010.
[18] R. J. Chen, C. C. K. Lin, and M. S. Ju, "In situ transverse elasticity and blood perfusion change of sciatic nerves in normal and diabetic rats," Clinical Biomechanics, vol. 25, No.5, pp. 409-414, 2010.
[19] M. L. Lowder, "Distribution of stress in three-dimensional models of human coronary atherosclerotic plaque based on acrylic histologic sections," Georgia Institute of Technology, 2007.
[20] E. K. Main, J. E. Goetz, M. James Rudert, C. M. Goreham-Voss, and T. D. Brown, "Apparent transverse compressive material properties of the digital flexor tendons and the median nerve in the carpal tunnel," Journal of Biomechanics, vol. 44, No.5, pp. 863-868, 2011.
[21] J. Kim and M. A. Srinivasan, "Characterization of viscoelastic soft tissue properties from in vivo animal experiments and inverse FE parameter estimation," Medical Image Computing and Computer-Assisted Intervention¡VMICCAI 2005, pp. 599-606, 2005.
[22] 陳榮健, "類線性黏彈理論於正常與糖尿病變周邊神經組織在位力學與類神經細胞力學之研究," 國立成功大學機械工程研究所博士論文, 2010.
[23] A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G. J. Tearney, R. D. Kamm, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Annals of Biomedical Engineering, vol. 32, No.11, pp. 1494-1503, 2004.
[24] R. Ogden, "Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 326, No. 1567, pp. 565-584, 1972.
[25] Z. Lertmanorat and D. M. Durand, "Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study," Journal of Neural Engineering, vol. 1, pp. 202-211, 2004.
[26] Y. Grinberg, M. A. Schiefer, D. J. Tyler, and K. J. Gustafson, "Fascicular perineurium thickness, size, and position affect model predictions of neural excitation," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 16, No.6, pp. 572-581, 2008.
[27] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, No. 4598, pp. 671-680, 1983.
[28] G. Georgeu, E. T. Walbeehm, R. Tillett, A. Afoke, R. A. Brown, and J. B. Phillips, "Investigating the mechanical shear-plane between core and sheath elements of peripheral nerves," Cell and Tissue Research, vol. 320, No.2 , pp. 229-234, 2005.
[29] R. L. Tillett, A. Afoke, S. M. Hall, R. A. Brown, and J. B. Phillips, "Investigating mechanical behaviour at a core–sheath interface in peripheral nerve," Journal of the Peripheral Nervous System, vol. 9, No. 4, pp. 255-262, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw